305-CD-045-001
EOSDIS Core System Project

Flight Operations Segment (FOS)
Command Design Specification
for the ECS Project

October 1995

Hughes Information Technology Corporation
Upper Marlboro, MD

Flight Operations Segment (FOS)
Command Design Specification
for the ECS Project

October 1995

Prepared Under Contract NA S5-60000

CDRL Item #046
APPROVED BY
Ca Moore /s 9/22/95
Cal Moore, FOS CCB Chairman Date

EOSDIS Core System Project

Hughes Information Technology Cor poration
Upper Marlboro, Maryland

305-CD-045-001

This page intentionally left blank.

305-CD-045-001

Preface

Thisdocument, one of nineteen, comprisesthe detailed design specification of the FOS subsystems
for Releases A and B of the ECS project. This includes the FOS design to support the AM-1
launch.

The FOS subsystem design specification documents for Releases A and B of the ECS project
include:

305-CD-040
305-CD-041
305-CD-042
305-CD-043
305-CD-044
305-CD-045
305-CD-046
305-CD-047
305-CD-048
305-CD-049
305-CD-050
305-CD-051
305-CD-052
305-CD-053
305-CD-054
305-CD-055
305-CD-056
305-CD-057
305-CD-058

FOS Design Specification (Segment Level Design)
Planning and Scheduling Design Specification
Command Management Design Specification
Resource Management Design Specification
Telemetry Design Specification

Command Design Specification

Real-Time Contact Management Design Specification
Analysis Design Specification

User Interface Design Specification

Data Management Design Specification

Planning and Scheduling Program Design Language (PDL)
Command Management PDL

Resource Management PDL

Telemetry PDL

Real-Time Contact Management PDL

Analysis PDL

User Interface PDL

Data Management PDL

Command PDL

Object models presented in this document have been exported directly from CASE tools and in
some cases contain too much detail to be easily readable within hard copy page constraints. The
reader is encouraged to view these drawings on line using the Portable Document Format (PDF)
electronic copy available viathe ECS Data Handling System (EDHYS) at

URL http://edhsl.gsfc.nasa.gov.

Y% 305-CD-045-001

Thisdocument isacontract deliverable with an approval code 2. Assuch, it does not require formal
Government approval, however, the Government reserves the right to request changes within 45
days of the initial submittal. Once approved, contractor changes to this document are handled in
accordance with Class | and Class Il change control requirements described in the EOS

Configuration Management Plan, and changesto this document shall be made by document change
notice (DCN) or by complete revision.

Any guestions should be addressed to:

Data Management Office

The ECS Project Office

Hughes Information Technology Corporation
1616 McCormick Drive

Upper Marlboro, Maryland 20774-5372

% 305-CD-045-001

Abstract

The FOS Design Specification consists of a set of 19 documents that define the FOS detailed
design. The first document, the FOS Segment Level Design, provides an overview of the FOS
segment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems. It also alocates the level 4 FOS requirements to the subsystem
design.

Keywords: FOS, design, specification, anaysis, IST, EOC

vi 305-CD-045-001

This page intentionally left blank.

vii 305-CD-045-001

Change Information Page

List of Effective Pages

Page Number Issue
Original

iii through xii Original
1-1and 1-2 Original
2-1 through 2-4 Original
3-1 through 3-198 Original
AB-1 through AB-8 Original
GL-1 through GL-8 Original

Document History

Document Status/Issue Publication Date CCR Number
Number
305-CD-045-001 Original October 1995 95-0653

viii

305-CD-045-001

This page intentionally left blank.

IX 305-CD-045-001

Contents

11
1.2
1.3
14
15

21
22
2.3

3.1
3.2

3.3

Preface

Abstract

1. Introduction

Lo L= o1uY {107z 1 o o OSSO P PPN 1-1
SCOPIE ..ttt h bR R R e R R et R e e R e Re Rt e e e e neen e e 1-1
U001 SRR RPTRI 11
StatuS anNd SChEAUIEc.ooeiee e 1-1
DOCUMENE OFQaNIZBLIONeieeiuireieieeietesie sttt sb et e e s b sneene e 1-1

Parent DOCUMENT ...t e e e e e e e e e e e e e e e e e s ennnreeeeeaeeas 2-1
APPIICADIE DOCUMENLS ..ottt esreenesneesneenneas 2-1
INFOrMationN DOCUMENLSvveiiceiieecieee et e et etee e etee e et e e e e e esaeeeerseesssseesabseessseesnrenesns 2-2
2.3.1 Information Document REfErenCedcceeeueeieceiecieeccee e 2-2

3. Command Subsystem

Command CoNteXt DESCIIPLIONccuerueriiieiriieieeieeeee e 31
FormatCommand DESCIIPLIONcccuieiieiiieiie e sis et sraeene e 3-3
3.2.1 FormatCommand Context DESCIHPLIONcceveereerieeieseerie e 3-3
3.2.2 FormatCommand INTEIfaCeScceeiieieriee e 3-6
3.2.3 FormatCommand Object Model DesCriptioncccceevvevieeiieciie s 3-10
3.24 FormatCommand Subsystem Dynamic Modelccccoveveviereeincieseeciecens 3-14
3.25 FormatCommand Data DICIONAIYcceeeeeeieeieenieneenie e 3-88
FOPComMmMaNd DESCIIPLIONc..ooveiiiriiriieiieiee et 3-107
3.3.1 FopCommand Context DESCIIPLIONccccvieeiieiie e sie e 3-107
3.3.2 FopCommand INtEITACESceveereieiesieseee e 3-109
3.3.3 FopCommand Object Model DESCIIPLIONcceoerierieriereneseeeeeeie e 3-110
3.3.4 FopCommand Dynamic Model DeSCriptionccccveeevieeieriiieesiecieesiee e 3-116
3.3.5 FopCommand Data DICtIONAIYcccccccereerieiieeseeieeeeseesieseesseeseesee e eneesns 3-147

X 305-CD-045-001

34 TransmitCommand DESCIPLIONccveiuiririeieiese e 3-170

3.4.1 TransmitCommand Context DeSCriPtiONcccccoveerereererienee e 3-170
3.4.2 TransmitCommand INtEIfACEScoeiiriiririeiee e 3-172
3.4.3 TransmitCommand Object Model DEeSCriptionccocerererierieeieeniesieseneens 3-174
3.4.4 TransmitCommand Dynamic Model DesCriptionccoceevereenenieenceniennnn. 3-178
3.4.5 TransmitCommand Data DiCtioNarycccecoveieevieeieieese e 3-186
Figures
3.1-1. Command Subsystem Context DIiagramcccccceeeceevieesieesee s 3-2
3.2.1-1. FormatCommand Context DIiagramccccceeeereeneerieciee e see s esee e 3-5
3.2.3-1. FormatCommand Object DIiagramccoceeeeeeieeniereneseseseseseeee e 3-12
3.2.3-2. FormatCommand Message Object Diagramcccccceveeevieeiieecceesee e 3-13
3.24.1-1. FormatCommand Initialization: Successful for Primary Processccccccou..... 3-17
3.24.2-1. FormatCommand Initialization: Successful for Back Up Processc.cc...... 3-20
3.24.3-1. FormatCommand Change Authorized User: SUCCESSFUlccceevvveveeiiieiiiieiins 3-22
3.24.4-1. Rea-Time Command Validation: Successful Event Tracecccceveveerieriennne 3-26
3.245-1. Rea Time Command Validation: No command definitionccccccevvreernene 3-28
3.24.6-1. Rea Time Command Validation: Fail Submnemonic checkccccooovrinnnne 331
3.24.7-1. Rea Time Command Validation: No Prerequisite overrideccccceevveceernnnne. 3-34
3.24.8-1. Rea Time Command Validation: Cancel criticalcccccoocvvieneninnieeneninniene 3-37
3.24.9-1. Stored Command Validation: Verification requiredccccoceevvveieeiieiieeiinnns 3-40
3.24.10-1. Stored Command Validation: No Verification requiredccccceevevvervecenrnnnne. 3-42
3.24.11-1. Write Configuration SNapshot reQUESEcoerireriieieierese e 3-44
3.2.4.12-1. Read Configuration Snapshot rEQUESLcccceviiiiieiieeiie e 3-46
3.24.13-1. Load Command Validation: Successful Event Tracecccoerverierieeneenierienienne 3-49
3.24.14-1. Load Command Validation: Unsuccessful dueto missingloadcccccenee. 3-51
3.24.15-1. Load Command Validation: Unsuccessful dueto Invalid Parameters 3-54
3.24.16-1. Load Command Validation: Unsuccessful dueto canceling out-of-ordered
PAITITION ...ttt e e e s b e e nar e e e ena e e e be e sae e nnre e 3-57
3.24.17-1. Load Command Validation: Unsuccessful dueto no prerequisite
OVEITIAR oottt sttt te st e st e te e st e s beentesneesreenseeneeneenn 3-60
3.2.4.18-1. Load Command Validation: Unsuccessful dueto canceling critical 3-63
3.24.19-1. Load Command: ADOI LOBccccereriiiiiirie e 3-66
3.24.20-1. Rea-Time Command Verification: Successful Event Tracec.cccoceevvrveereenne 3-69
3.24.21-1. Rea-Time Command Verification: Fail duetotimeoutccoccevveereriennnenne 371
3.24.22-1. Rea-Time Load Verification: Successful Event Traceccocvvevveeeienicieeninn 3-74
3.24.23-1. Rea-TimeLoad Verification: Faillure dueto time outccoeeveeeneenenenseenne 3-76
3.24.24-1. Rea TIMEDUMP ...oocueiiieieeee ettt st et sre e e e re e ens 3-78
3.24.25-1. Hex Command Validation: SUCCess EVENt TraCeccccvvvverenenienennienie e 3-80

Xi 305-CD-045-001

3.2.4.26-1.
3.24.27-1.
3.2.4.28-1.
3.2.4.29-1.
3.3.1-1
3.3.3-1.
3.3.3-2.
3.3.3-3.
3.34.1-1.
3.34.2-1.
3.34.3-1
3.34.4-1.
3.34.5-1.
3.3.4.6-1.
3.3.4.7-1.
3.34.8-1.
3.34.9-1.
3.3.4.9-2.
3.3.4.10-1.
3.3.4.11-1.
3.4.1-1.
34.3-1.
3.4.3-2.
3.4.3-3.
34.4.1-1.
3.4.4.2-1.
3.4.4.3-1.

3.2.2.
3.3.2.
34.2.

Hex Command Validation; Faillure EVEnt TraCe ..coeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeens 3-82

FcCdCmdController state diagramcooeeveeenieieneesee e 3-84
FCCARICMA State diagramcocueeiieiiesieee et 3-86
FcCdLoadCmd State diagramcoeeeeeeriiienieseseseeeeee e 3-87
FopCommand Context Diagramccoceveeienieeneerenee e 3-108
FopCommand Object DIiagramcccccceeveeieeeeseesie e 3-113
FopCommand Request Message Object Diagramc.ccoceveeeeieeneeneeneenenienne 3-114
FopCommand TcFrame Object Diagramccoceveereeieneeniesee e 3-115
FopCommand Initialization: SUCCESSFUlc.coveieeiieieee e 3-118
FopCommand Initialization: Failure SCENarioccoverererenieeiesesesesie 3-120
FopCommand Init. AD Service w/out CLCW: Successfulcocevvvvrieernnnns 3-122
FopCommand Init. AD Service w/out CLCW: Failure scenario 3-124
FopCommand Init. AD Service with CLCW: Successfulcccccvvvvevveceerennne. 3-126
FopCommand Init. AD Service with CLCW: Failure scenarioccceeee.e. 3-129
FopCommand Init. AD Service with set VR: Successful scenario 3-132
FopCommand Init. AD Service with set VR: Failure scenariocccce....... 3-135
FopCommand TranSmiSSiON SCENAMIOcecurrueerierieerieerieeee e sie e seee e seeenes 3-138
FopCommand: Building Transfer Framecccccceveveeieceeve e 3-139
FopCommand Retransmission SCENAMOcooveveriererereniesieeeeeeee e 3-142
FCCMCcsASFOP State diagraimcceeveieerieeieeee e 3-146
TransmitCommand Context Diagramccccceeveereeieesieeneeseseeseseeseesae s 3171
TransmitCommand ODbJect Diagramcccecevererereneneseseeeee e 3-175
RMS/ TransmitCommand I/F Object Diagramccccevereenerieeneenesennienes 3-176
FopCommand / TransmitCommand I/F Object Diagramcccccevveveervenne. 3-177
Real Time Command TranSMiSSIONccccveeereererreeseeeeseeseeseesseesseseeseeenes 3-180
Real Time Load Command TranSmMiSSIONccceceereerierienseenieseeseesieseeseeens 3-183
FcCmTransmitController state diagramcccceeveveeveeie e 3-185
Tables

FormatCommand INTEITACEScoeeiieieresise e e 3-6

FOPCommand INTEITACEScooiriiiieeeee e 3-109

TransmitCommand INLEIfACESooeiiiiiiiee e 3-172

Abbreviations and Acronyms

Glossary

Xil 305-CD-045-001

This page intentionally left blank.

Xiii 305-CD-045-001

1. Introduction

1.1 Identification

The contents of this document defines the design specification for the Flight Operations Segment
(FOS). Thus, this document addresses the Data Item Description (DID) for CDRL Item 046
305/DV 2 under Contract NA S5-60000.

1.2 Scope

The Flight Operations Segment (FOS) Design Specification definesthe detailed design of the FOS.
It alocates the Level 4 FOS requirements to the subsystem design. It also defines the FOS
architectural design. In particular, this document addresses the Data Item Description (DID) for
CDRL # 046, the Segment Design Specification.

This document reflects the August 23, 1995 Technical Baseline maintained by the contractor
configuration control board in accordance with ECS Technical Direction No. 11, dated
December 6, 1994.

1.3 Purpose

The FOS Design Specification consists of a set of 19 documents that define the FOS detailed
design. The first document, the FOS Segment Level Design, provides an overview of the FOS
segment design, the architecture, and analyses and trades. The next nine documents provide the
detailed design for each of the nine FOS subsystems. The last nine documents provide the PDL
for the nine FOS subsystems.

1.4 Status and Schedule

This submittal of DID 305/DV2 incorporates the FOS detailed design performed during the
Critical Design Review (CDR) time frame. Thisdocument isunder the ECS Project configuration
control.

1.5 Document Organization

305-CD-040 containsthe overview, the FOS segment models, the FOS architecture, and FOS
analyses and trades performed during the design phase.

305-CD-041 contains the detailed design for Planning and Scheduling Design Specification.

305-CD-042 contains the detailed design for Command Management Design Specification.

305-CD-043 contains the detailed design for Resource Management Design Specification.

305-CD-044 contains the detailed design for Telemetry Design Specification.

305-CD-045 contains the detailed design for Command Design Specification.

305-CD-046 contains the detailed design for Real-Time Contact Management Design
Specification.

305-CD-047 contains the detailed design for Analysis Design Specification.

1-14 305-CD-045-001

305-CD-048 contains the detailed design for User Interface Design Specification.
305-CD-049 contains the detailed design for Data Management Design Specification.
305-CD-050 contains Planning and Scheduling PDL.

305-CD-051 contains Command Management PDL.

305-CD-052 contains Resource Management PDL.

305-CD-053 containsthe Telemetry PDL.

305-CD-054 contains the Real-Time Contact Management PDL.

305-CD-055 containsthe Analysis PDL.

305-CD-056 containsthe User Interface PDL.

305-CD-057 contains the Data Management PDL.

305-CD-058 contains the Command PDL.

Appendix A of thefirst document contains the traceability between Level 4 Requirements and the
design. The traceability maps the Level 4 requirements to the objects included in the subsystem
object models.

Glossary contains the key terms that are included within this design specification.

Abbreviations and acronyms contains an alphabetized list of the definitions for abbreviations and
acronyms used within this design specification.

1-15 305-CD-045-001

2. Related Documentation

2.1 Parent Document

The parent documents are the documents from which this FOS Design Specification’s scope and
content are derived.

194-207-SE1-001 System Design Specification for the ECS Project

304-CD-001-002 Flight Operations Segment (FOS) Requirements Specification for the
ECS Project, Volume 1: Genera Requirements

304-CD-004-002 Flight Operations Segment (FOS) Requirements Specification for the

ECS Project, Volume 2: Mission Specific

2.2 Applicable Documents

The following documents are referenced within this FOS Design Specification or are directly
applicable, or contain policies or other directive matters that are binding upon the content of this
volume.

194-219-SE1-020 Interface Requirements Document Between EOSDIS Core System
(ECS) and NASA Institutional Support Systems

209-CD-002-002 Interface Control Document Between EOSDI'S Core System (ECS)
and ASTER Ground Data System, Preliminary

209-CD-003-002 Interface Control Document Between EOSDIS Core System (ECS)
and the EOS-AM Project for AM-1 Spacecraft Analysis Software,
Preliminary

209-CD-004-002 Data Format Control Document for the Earth Observing System
(EOS) AM-1 Project Data Base, Preliminary

209-CD-025-001 ICD Between ECS and AM 1 Project Spacecraft Software
Development and Validation Facilities (SDVF)

311-CD-001-003 Flight Operations Segment (FOS) Database Design and Database
Schemafor the ECS Project

502-1CD-JPL/GSFC Goddard Space Flight Center/MO& DSD, Interface Control

Document Between the Jet Propulsion Laboratory and the Goddard
Space Flight Center for GSFC Missions Using the Deep Space
Network

530-ICD-NCCDS/IMOC Goddard Space Flight Center/MO&DSD, Interface Control
Document Between the Goddard Space Flight Center Mission
Operations Centers and the Network Control Center Data System

2-16 305-CD-045-001

530-ICD-NCCDS/POCC Goddard Space Flight Center/MO&DSD, Interface Control

Document Between the Goddard Space Flight Center Payload
Operations Control Centers and the Network Control Center Data
System

530-DFCD-NCCDS/POCC Goddard Space Flight Center/MO&DSD, Data Format control

540-041

560-EDOS-0230.0001

|CD-106

none

Document Between the Goddard Space Flight Center Payload
Operations Control Centers and the Network Control Center Data
System

Interface Control Document (ICD) Between the Earth Observing

System (EOS) Communications (Ecom) and the EOS Operations
Center (EOC), Review

Goddard Space Flight Center/MO&DSD, Earth Observing System
(EOS) Data and Operations System (EDOS) Data Format
Requirements Document (DFRD)

Martin Marietta Corporation, Interface Control Document (ICD)
Data Format Control Book for EOS-AM Spacecraft

Goddard Space Flight Center, Earth Observing System (EOS) AM-1
Flight Dynamics Facility (FDF) / EOS Operations Center (EOC)
Interface Control Document

2.3 Information Documents

2.3.1 Information Document Referenced
The following documents are referenced herein and, amplify or clarify the information presented

in this document.

Specification.
194-201-SE1-001
194-202-SE1-001
193-208-SE1-001
308-CD-001-004
194-501-PA1-001
194-502-PA1-001

604-CD-001-004
604-CD-002-001

604-CD-003-001

194-WP-912-001
194-WP-913-003

These documents are not binding on the content of this FOS Design

Systems Engineering Plan for the ECS Project

Standards and Procedures for the ECS Project

Methodology for Definition of External Interfaces for the ECS Project
Software Development Plan for the ECS Project

Performance Assurance Implementation Plan for the ECS Project
Contractor's Practices & Procedures Referenced inthe PAIPfor theECS
Project

Operations Concept for the ECS Project: Part 1-- ECS Overview, 6/95

Operations Concept for the ECS project: Part 2B -- ECS Release B,
Annotated Outline, 3/95

ECS Operations Concept for the ECS Project: Part 2A -- ECS Release
A, Final, 7/95

EOC/ICC Trade Study Report for the ECS Project, Working Paper
User Environment Definition for the ECS Project, Working Paper

2-17 305-CD-045-001

194-WP-920-001
194-TP-285-001
222-TP-003-006

none

560-EDOS-0211.0001

NHB 2410.9A

An Evauation of OASIS-CC for Usein the FOS, Working Paper
ECS Glossary of Terms
Release Plan Content Description

Hughes Information Technology Company, Technical Proposal for the
EOSDIS Core System (ECS), Best and Final Offer

Goddard Space Flight Center, Interface Requirements Document (IRD)
Between the Earth Observing System (EOS) Data and Operations
System (EDOS), and the EOS Ground System (EGS) Elements,
Preliminary

NASA Hand Book: Security, Logistics and Industry Relations
Division, NASA Security Office: Automated Information Security
Handbook

2-18 305-CD-045-001

This page intentionally left blank.

2-19 305-CD-045-001

3. Command Subsystem

The Command Subsystem provides the capability to: build, validate, uplink and verify real-time
commands for the EOS spacecraft and instruments; uplink and verify memory loads for the EOS
spacecraft and instruments; and verify execution of stored commands for the EOS spacecraft and
instruments during a real -time contact.

3.1 Command Context Description

The context diagram in Figure 3.1-1 depicts the data flows between the FOS Command Subsystem
and the internal EOC and external ground system components. Descriptions of data flows are
summarized for each components:

Parameter Server: Decommutated spacecraft and instrument telemetry samples are made
available to the Command Subsystem process in response to queries. The Command
Subsystem uses these samples to verify rea-time, load and stored commands.

FOS Telemetry Subsystem: Received Dump notification from Command Subsystem.

FOS Resour ce Management Subsystem: RMS starts the command tasks running as part
of alogical string and then supplies EOC spacecraft contact and commanding session
configuration information.

FOS Data Management Subsystem: Command database and stored memory load
information may be retrieved from the Data Management Subsystem. Information
pertaining to user authorization, command bit pattern definition, validation, and
verification isstored in the command database. Spacecraft and instrument commandsto be
executed autonomously, as well as flight software, may be contained within the stored
memory loads. The Data Management Subsystem receives, stores, and forwards to the
appropriate subsystems and instrument teams, the command event messages (command
uplink status, command verification, command notification and command load status)
generated by the Command Subsystem process. Configuration files, part of the database,
areread from the DMS. Snapshot files are written to and read from the DMS.

FOSUser Interface Subsystem: The User Interface delivers command and load directives
to the Command Subsystem. The source of individual directives may be EOC automated
ground scripts or FOT input that have been parsed by the User Interface prior to delivery
to the Command Subsystem. For each command or load directive, the Command
Subsystem performs an authorization check and validation. For transmission of critical
spacecraft and instrument commands and |oads, the Commanding Subsystem prompts FOT
for confirmation viathe User Interface, and User Interface delivers FOT's response to the
Command Subsystem. Similarly, a prerequisite override prompt gives the operator the
option to uplink commands that fail prerequisite state checking. The User Interface also
receives and displays command status generated by the Command Subsystem.

EDOS: The Command Subsystem meters out CLTUs to EDOS for uplink to the
spacecraft. The Subsystem also receives CLCWs from EDOS.

3-20 305-CD-045-001

EDOS

T¢-€

T00-G70-AD-S0E

Parameter Server
FOS
Telemetry
Subsystem oLt
CLCWs s
Ground
Parameter Parameter values
Values TLM query
dump notification
FOS
Resource Configuration Directives, Cmd Status,
Management [~ Snapshot request gl?l?;ms?gr% Prompts
Subsystem & Y! Fos
status. User
dirg{?\%s, — | Interface
Prompt responses

Config Info :
Config Info

Cmd DB, Cmd status Completion

Loads Status,
CLCWs,
V CLTUs

FOS

Data

Management
Subsystem

Figure 3.1-1. Command Subsystem Context Diagram

3.2 FormatCommand Description

The FormatCommand process is responsible for the processing of spacecraft commands from the
user interface, and formatting them into the format recognized onboard the spacecraft: 1553b
format for the AM1 mission. It is aso responsible for handling directives from FUI for
configuration changes, and execution verification of commands.

3.2.1 FormatCommand Context Description

The context diagram in Figure 3.2.1-1 depicts the data flows between the FOS Command
Subsystem and the internal EOC and external ground system components. Descriptions of data
flows are summarized for each component:

Parameter Server: Decommutated spacecraft and instrument tel emetry samples are made
availableto the FormatCommand processin response to queries. The Command Subsystem
uses these samples to verify real-time, load and stored commands.

FOS Telemetry Subsystem: Received Dump notification from FormatCommand.

FOS Resour ce Management Subsystem: RMS starts the command tasks running as part
of alogical string and then supplies EOC spacecraft contact and commanding session
configuration information. This information includes command database selection, valid
authorized user ID, prerequisite setting, and whether the process is acting as part of the
primary or backup command subsystem, and other configuration changes from FUI which
are routed through RMS.

FOS Data Management Subsystem: Command database and stored memory load
information may be retrieved from the Data Management Subsystem. Information
pertaining to user authorization, command bit pattern definition, validation, and
verification is stored in the command database. Spacecraft and instrument commandsto be
executed autonomously, as well as flight software, may be contained within the stored
memory loads. The Data Management Subsystem receives, stores, and forwards to the
appropriate subsystems and instrument teams, the command event messages (command
uplink status, command verification, command notification and command load status)
generated by the FormatCommand process. Configuration files, part of the database, are
read from the DMS. Snapshot files are written to and read from the DMS The
configuration file information includes the max downlink time and the setting of the
prerequisite checking (i.e., enabled or disabled). FormatCommand also uses DMS to
access Load Catalog Entry. Once aload, or a 4k load partition, is confirmed as uplinked,
CMSisnotified so that it can track the progress of loads.

FOSUser Interface Subsystem: The User Interface deliverscommand and load directives
to the FormatCommand process. The source of individua directives may be EOC
automated ground scripts or FOT input that have been parsed by the User Interface prior to
delivery to the FormatCommand process. For each command or load directive, the
Command Subsystem performs an authorization check and validation. For transmission of
critical spacecraft and instrument commands and loads, the Commanding Subsystem
prompts FOT for confirmation via the User Interface, and User Interface delivers FOT's
response to the Command Subsystem. Similarly, a prerequisite override prompt gives the
operator the option to uplink commands that fail prerequisite state checking. The User

3-22 305-CD-045-001

Interface also receives and displays command status generated by the Command
Subsystem.

FopCommand process: The command, in its 1553-B format, or the packet in CCSDS
format, is forwarded to the FopCommand process, where the command or load packet is
further prepared for uplinking. Command receipts, which confirm the final uplink status
of commands and loads, are received from the FopCommand process.

3-23 305-CD-045-001

Ve

T00-G70-AD-S0E

FopCommand

A

FOS
Resource
Management
Subsystem

Parameter Server
FOS ;
Telemetry Formatte
Subsystem Commands, Cmd
Memory eceipts
Loads Ground
Parameter Parameter values
Values TLM query
dump notification This Sy:

Configuration Directives, Cmd Status,

Snapshot request FormatCommand

Prompts \

Cmd I
directives,

status

FOS
User
Interface

Prompt responses

Config Info

Config Info

Cmd DB, Cmd status Load
Loads Completion
// Status
FOS
Data
Management
Subsystem

Figure 3.2.1-1. FormatCommand Context Diagram

3.2.2 FormatCommand Interfaces

Table 3.2.2. FormatCommand Interfaces (1 of 4)

Interface Interface Interface Class Service Service Frequency
Service Class Description Provider User
Forwards FcCm Forwards Cmds to CMD: CMD: once per
commands CCSDSFop | FopCommand Fop Format command
Proxy process Command | Command
FcGnFop Message containing
CmdMsg a r/ft command, in
1553-b format
FcGnFop Message containing
PacketMsg [a CCSDS packet
Passing acks | FcCdFop Receives acknow- CMD: CMD: two
and status for | Format ledgments & uplink Format Fop messages
commands Proxy receipts from the Command | Command | per
FopCommand command
process
FcGnFop Acknowledgement
AcceptMsg | message
FcGnFop Message confirming
Receipt onboard receipt of a
Msg command
Provide FoCdRms Sends configuration | CMD: RMS: < 10 per
Configur- CmdProxy | directives from RMS | Format String pass, or
ation Info to FormatCommand | Command | Manager | <280/ day
process
FoGnRms Message to change
SetPrereq prereq check
CheckMsg override setting
FoGnRms Message notifying
Shutdown FormatCommand
Msg process to terminate
FoGnRms Message requesting
Save Format Command to
Snapshot create a snapshot file
Msg
FoGnRms Message requesting
SetCmd cmd authorization be
AuthUser set to specified user/
Msg workstation

3-25

305-CD-045-001

Table 3.2.2. FormatCommand Interfaces (2 of 4)

Interface Interface Interface Class Service Service Frequency
Service Class Description Provider User

FoGnRms Message to change

Fromat the setting of primary

Primary mode

Mode

FoGnRms Message containing

Format initialization values

InitMsg
Returns FoGnCmd Returns a completion | CMD: RMS: <10 per
directive Rmslf status of directives to | Format String pass, or
Status RMS Command | Manager <280/ day

FoGnRms Directive completion

ReceiptMsg | message

FoGnRms Message requesting

SetCmd cmd authorization be

AuthUser set to specified user/

Msg workstation

FoGnRms Message to change

Fromat the setting of primary

Primary mode

Mode

FoGnRms Message containing

Format initialization values

InitMsg
Returns FoGnCmd Returns acompletion | CMD: RMS: <10 per
directive Rmslf status of directives to | Format String pass, or
Status RMS Command | Manager < 280/ day

FoGnRms Directive completion

ReceiptMsg | message
Provide FoGnFui Sends r/t & stored CMD: FUI: 1-3 per
commands & | CmdProxy | commands, and Format Ground command
prompt prompt responses Command | Script
responses from FUI to Controller

FormatComand
process

FoGnFuiRt | Message containing

CmdMsg a real time command

FoGnFui Message containing

StoredCmd | a stored command

Msg

3-26

305-CD-045-001

Table 3.2.2. FormatCommand Interfaces (3 of 4)

Interface Interface Interface Class Service Service Frequency
Service Class Description Provider User
FoGnPart Message containing
RspMsg user response to a
partitioned load error
override prompt
FoGnFui Message containing
Critical user response to a
RspMsg critical prompt
FoGnFui Message containing
Prereq user response to a
RspMsg prerequisite override
prompt
FoGnFui Message instructing
LoadMsg Format Command to
begin processing a
load
GoGnFui Message instructing
AbortLoad Format
Msg Command is to
interrupt the load in
progress
Provide FoGnCmd Sends command CMD: FUL: 1-5 per
command Fuilf status messages to Format Ground command
status info FUI Command | Script
Controller
FoUi Message containing
Instruction the command status
Interface to FoGnCmd Sends messagesto | CMD: TLM: <1/day
TLM TImProxy the TLM subsystem [Format Decom
subsystem Command
FoGnTIm Msg notifying TLM
DumpMsg subsystem that a
dump command has
been issued
Provides Parameter Sends ground Parameter | CMD: nominally
access to Server parameters and Server Format <12 per
data values Interface receives TLM Command | command

parameters

3-27

305-CD-045-001

Table 3.2.2. FormatCommand Interfaces (4 of 4)

Interface Interface Interface Class Service Service Frequency
Service Class Description Provider User
ClientPid List of parameters for
List which data is to be
received
ClientBuffer | Data buffer
containing S/C
parameter values
Parameter Contains Format
Command Config
values
FoUi Message containing
Instruction the command status
Interface to FoGnCmd Sends messagesto | CMD: TLM: <1/day
TLM TImProxy the TLM subsystem [Format Decom
subsystem Command
FoGnTIm Msg notifying TLM
DumpMsg subsystem that a
dump command has
been issued
Provides Parameter Sends ground Parameter | CMD: nominally
access to Server parameters and Server Format <12 per
data values Interface receives TLM Command | command
parameters
ClientPid List of parameters for
List which data is to be
received
ClientBuffer | Data buffer
containing S/C
parameter values
Parameter Contains Format
Command Config
values
Event FdEvEvent | Provides routing and | DMS: CMD: 1-5 per
Logging Logger archiving of events [FdEvEvent | Format command
messages Archiver Command

3-28

305-CD-045-001

3.2.3 FormatCommand Object Model Description

The design scope for the FormatCommand process Object Model (Figure 3.2.3-1) is the
commanding of asingle EOS spacecraft and itsinstruments viaasingle logical string.

The FcCdCmdController class controls the flow of operations to process commands into the
1553-B spacecraft format. It isresponsible for initialization of the FormatCommand process and
is the entry point for command and load directives. Command directives are received via the
FcCdReceivelf class from the User Interface Subsystem for processing by the
FcCdCmdController. The FcCdCmdController's role is to coordinate validation, build,
transmission, receipt verification and execution verification for real-time commands and loads and
to coordinate execution verification alone for stored commands. For real-time commands, it is
responsible for validating the command submitted in the command directive utilizing the
command database; initializing the command's verification modes; and initiating building of the
command. ASTER command status will be exported to the ASTER control center via the
FdEvEventLogger class in addition to the EOC via the User Interface Subsystem. Note that
commands processed by FcCdCmdController may be in various formats; e.g., 1553-B (AM-1
real-time) and CCSDS packets (load data). For stored commands (commands that have previously
been loaded and are currently executing onboard the spacecraft), real-time commands (which are
executed upon receipt onboard the spacecraft), and loads, it retrieves the telemetry verification
point information from the command database, creates the FcCdCmd objects with the verification
point information embedded within them, and then initiates the verification process. Upon
execution verification, the (stored or real-time) command verification status is recorded for each
command directive and displayed by User Interface.

The FcCdCmdQueue is used to keep a record of commands while they are waiting for receipt
verification and telemetry verification. It contains two data structures: alinked list of commands
which can be quickly referenced by their sequence number, and a hash table of parameters, each
of which hasits own linked list of commands which verify using that parameter. Thus, when an
updated parameter value comesin, al the commands which verify using that parameter are readily
accessed. The queue itself has operations to add and remove commands, to begin tim updates for
a command, to verify commands, and to identify time-out commands.

The FoGnRmsCmdProxy is used by RM S to configure FormatCommand

The FoGnFuiCmdProxy is used by FUI to send commands, loads, prompt responses, and |oad
aborts to FormatCommand.

The FoGnCmdFuilf is used to send command status messages to FUI.
The FoGnFormatTImif is used to send messagesto TLM.
The FoGnCmdTImProxy is used to send parameter service requeststo TLM Parameter Server.

The FcCdFopFormatProxy is used by FopCommand process to send accept and receipt status (for
areal time command or amemory load packet) to FormatCommand.

The FoPsClientlF is a proxy for parameter server. It is used by FormatCommand to serve
parameters.

The FoGnGenericMessage class (Figure 3.2.3-2) is a base class that represents all messages
received by FormatCommand, and some messages sent by FormatCommand. These messages are
not listed individually in this description. They can be found in a separate object model and in the

3-29 305-CD-045-001

interface table.
The FoUiStatus class is sent to FUI to inform it of command status.

The FcCdCommandDatabase classis a container classthat contains instances of the FcCdCmdDef
class for a single spacecraft and its instruments. The FcCdCmdDef class contains a single
command definition. The FcCdCommandDatabase is initialized from the Data Management
Subsystem via the FoDsFile class. Command definitions are templates for spacecraft and
instrument commands and are used in the validation of command directives.

The FcCdBaseCmd classisthe base classfor al command classes. It contains addresses of proxies
and interfaces used by all command classes.

The FcCdHexCmd class contains the hex/binary command in 1553-B format.

The FcCdCmd class specifies the common attributes and operations for command classes within
the Command Subsystem. FcCdCmd is further specified as three subclasses, FcCdRtCmd,
FcCdStoredCmd and FcCdL oadCmd.

The FcCdStoredCmd is used for telemetry verified of stored command. It contains the maximum
down link time to accommodate for the delay.

The FcCdRtCmd classisresponsible for building the binary bit pattern for uplink to the spacecraft.
The FcCdRtCmd class does prerequisite checking and execution verification of commands
uplinked to the spacecraft by accessing telemetry values viathe FoGnCmdTImProxy. A subclass
of the FcCdRtCmd classisthe FcCdLoadCmd class. The FcCdLoadCmd class handles spacecraft
and instrument memory loads.

The FcCdLoadCmd coordinates load processing by accessing and forwarding load data in the
FcCdLoadData object, in CCSDS packet format, from FcCdLoadCmd to FcCdCmdController.
The FcCdLoadCmd class verifies loads uplinked to the spacecraft by accessing telemetry values
viathe FoGnCmdTImProxy class.

The FcCdL oadData class holds the datafor aload.

The single instantiation of the FcCdCmdQueue class holds the commands and loads waiting for
telemetry verification. It stores them in two member object data structures, a linked list of
commands and loads, with the verification parameter of each; and a hash table which uses the
telemetry parameters as keys, with pointersto all the commands verifying off of each parameter.

3-30 305-CD-045-001

TE-€

T00-G70-AD-S0E

e ot S o i
e Spressod

]
yeghTable _: Rwiset oela
T b
1 cuanasin | Eo
n frsn e W |
=]] i il
] | | =
= lmul EcTvon ‘sende cump “Genevet) myFuCTdType. enum(mm ACH
S Ty e l::l ool amap
b bt i e P
* Casanomen o oyt o]
* Comontemng £ o it sk oo -
3 ooy et e oFuinon S oGSO
+ et Ectsoom)
L g Eersoon eren T
Jogs vons for ot smet recamasecma Coneg
poudibei Craatment e ol
+ Fretoo s v et pieh)
omanee syt st Ve T w0
e) © Ver T T v EcTocon
= T Frr
= g
: onrcnasnceeno
o Traa Lo
o et P —
sl L conarans €
- ey R "
== e s ==
s o -
e TS coutesiontcan
m,vmmmm‘m— RWthDﬂmmy myProreqCheckState boolean e -
e T80 e
e A e P s <Gt + eccanmcno
1 Cotmamariite) ETos - i e — =] : smwnumwmnwwm Forn < EcToomn
" it mobi Gt == + seicn) -
1 ptmonrescapa e i FeCaCnduee:
oy Fa e e
[l [erdie Fncdcmuww
Lo — — eal T
] Uy FoGnFuC Gy Jussetlongisionsd
FoGar oy myTimProyy FoGrmGndProxy O —— myDesination : scire |
P e % Eeer
T o BT ET iR FGrCTR T,
+ AborLoad(EcTiny : EcTint myomsi ; FoGnCmdDmsIF myFedDmaRe: - iy of et myFuCd - EcTint . oo
1 Secmabortm <€t jimeamivdy L ——
T e it S mesmon WGy
" Semesoretcmosimimeton) €t
Py AR o R e e Eerie e s
4 SendPrereqOvenide(EcTint, FeTCAPrereqRisp) EeTint N o myNumVarDataRec : EcTint myTimPd : EcTint
Ovenidel) . mmsmammmn(w«csmm EcTin EcTint, EcTing EcTvod myere c :am myPrereqRes st
© cessocamaesng. £, Ee ey -eanfo s o et i i
[© e, FTCoa €T o s vy T el
R Ja e doamiusnilighiboninmini Bt e posnes - rayot et ot s
* v Ectvod vton e s e ot
* rceononwele) - €cTvod Lo rap—
© PSR €TV T e gy FoGnnafogPiny
© TcontomimpnEatn) - EetVod e iy Focrcab oo
" s § i P — iy - raldcaninny
S I] L Ve e e o EcTton
sosopeenss | 1 Somsmpari * et e o -FCS-
; poostuns mmmwmmw eervon taand o
T P o s paon e
N e e i gervon e
L 1 i e s Echia=o
. e oy WS
Focamat * eCamaoay
0 T © i et
- * Coaeetmy e © Sasie 6o
2 ey e oS- CRG, xTaoln o, ECT Tk, een
* s e Sonm
* e Vot RCS i Sy <EsTeagen
T S Eiposn © repvengasecty e
+ secmanmtsa elmosen s © RecopnabraEeT) e
p fosi s e * Mmoo et
| g e © T et il goe
+ snaom) * Timironaeetg et —L ot
* oty et
- e]
B ==
f FecdCmaqueue & Fecdsimeacma)
| © cimacnay R e
e oo TP RRElecies © o) Ecrosen mcrearag e
ReceSSECTIN, EcToook) EETVold s s fcocabesteai juesempritn
! Loy vovweny e - Rwcsing
J— - Jlougpiiyes e Jlraryimigytod
P — s WcSig
T vty
e v — aatye WG
- mw,,.r.,m,w“ e P ———— T o —
[o] $ Vet <avaa . s - et
$ Gty Eervo o
Pras—
[: P snts pceo sl
* By - Extocsn - o,
3 ey R e oot Ecl
1 PG AR Foiti) e s s vrageLocabon
D it st ot S o o WSt
e cminy et ;S e FoSTmene
¥ Viaeprerepin ucrdsans) et ot WG
. — TG
e , © Gotianag - RwCSmo
sy © Gomdsan) <
1 Vi crow rrcoan 3 et o
! St ot gt
N lLoad) _: Ectit 4 GetumberUpinkLoads) - EcTint
P — * e - Ricains
+ ProcessPanionRsp(Fusa) _: EcTint + Gerspacecraniocasion RWCSiting
| et i ol €T Pt W
* Cetminctreg rommes
| e oo
‘W..,N."mmmww eervon
© sy tervoa
Jotionsioeatiogitatvin
© St - Eervaa
* ot st €cTvod
Jagpone csmos)
© S wSiosaest) €T
1 STty <€
L S ikaipnp s FOS ey e

T AP

Figure 3.2.3-1. FormatCommand Object Diagram

ce-€

T00-G70-AD-S0E

RWCollectable

FoUiStatus

mySeqNum: EcTint
myStatus: FoTU|Status

myText: RWCS!

ing

FoGnTImDumpMsg

myAbsoluteFlag: EcT|
myAddress: EcTInt
myTableld: EcTInt
mySegOffset: EcTIn
myWordLength: EcT|

Boolean

nt

Isl
FoGnGenericMsg
+ Execute(): virtfial EcTVoid
FoGnFuiMsg FcGnFopMsg
FoGnRmsMsg FoGnTImMsg
~ mySeqNum: Ec{int mySeqNum: Ectint
- myWksld: EcTl
- myUserld: EcTit
A FoGnRmsSetPrereqCheckMsg| FcGnFopAcceptMsg
P —_— ~ myPrereqCheckState FcTCdPrereqChecksfate e BT o
- myResponse: FcTddCriticalRsp + Execute(): EcTVoid N
¥ Execute() : EcTVoi 1 R
FoGnRmsFormatShutdownMsg I -
FcGnFopReceiptMsg -
—— + Execute(): ECTVoid = EcTBoolean
FoGnFuiPrereqRspMsg + FoGnRmsShutdownMsg()
- sonse: FeTddRsp + ~FoGnRmsShutdownMsg() + Execute(): EcTVpid
+ Execute(): ECTVoi
GnRmsSaveFormatSnapshothsg |
FcGnFopDataMs:
FoGnFuiAbortLoadMsg ~ myFileName: RWCString P o
~ myDataLength: Ecfint
T Execute(): ECTVON + Execute(): EcTVoid myData : ECTUChaf*
+ FoGnRmsSaveSnapshotMsg()
+ ~FoGnRmsSaveSnapshotMsg()
_— =l
FoGnFuiLoadMsg FoGnRmsSelCmdAuthUserMsg|
~ myLoadld: RWCString - -
- myType : FeTddLoadType i wgﬁg'd" AR Iul
FcGnFopCmdMsg
+ Execute(): EC1Void - -
+ Execute(): ECTVoid —yBoFiag EcfBoolean

FoGnFuiRICmdMsg

myString : RW

string

mySource: FcTCdSource

s

Execute(): EcT

oid

pPMsg

myResponse: FCTICdRsp

+

Execute() : ECTVold

mdMsg

myString : RWCStrifig
- mySource: FeTCdSpurce

+

Execute(): EcTVoid)

FoGnRmsFormatPrimaryModeMsg

myPrimaryMode: FcTCdPrimaryMode

+

+

Execute() : ECTVoid

SetPrimaryMode(FcTCdPrimaryModeEcTNoid

GetPrimaryMode() FcTCdPrimaryMode

myScld : EcTInt
- myDbld : EcTInt
myPrimaryMode: FcTCdHrimaryMode

- myOperationMode: FeTC{iOperationMode

myParamServerAddr FoTlGnAddress
- myFuiAddr: FoTGnAddrebs
myFopAddr: FoTGnAddrdss
myTImAddr: FoTGnAddrgss

+

Execute(): EcTVoid

+ Execute(): EclVoid

FcGnFopPacketMsg

myLoadld
myLoadStage: FcT|

ICdLoadStage

+

Execute() : ECTVoi

Figure 3.2.3-2. FormatCommand Message Object Diagram

3.2.4 FormatCommand Subsystem Dynamic Model

The following are the FormatCommand Subsystem scenarios which are defined in this section.
Real-Time Command: Initialization for Primary Process
Real-Time Command: Initialization for Back Up Process
Real-Time Command: Change User Authorization
Real-Time Command Validation: Successful
Real-Time Command Validation: No Command Definition
Real-Time Command Validation: Fail Submnemonic Check
Real-Time Command Validation: Fail Due to No Override
Real-Time Command Validation: Fail Due to Cancel Critical
Stored Command Validation
Stored Command Validation - No Verification
Write Configuration Snapshot Request
Read Configuration Snapshot Request
Load Command Validation: Successful
Load Command Validation: Fail Due to Missing Load
Load Command Validation: Fail Due to Invalid Parameter
Load Command Validation: Fail Due to Cancel Ciritical
Load Command Validation: Abort
Hex Command Validation: Success
Hex Command Validation: Fail Due to Cancel Critical
Real-Time Command V erification: Success
Real-Time Command Verification: Failure Due to Timeout
Real-Time Load Verification: Success
Real-Time Load Verification: Failure Due to Timeout
Real-Time Dump Command

Additionally, state diagrams for the Command Controller (FcCdCmdController), the Real-Time
Command (FcCdRtCmd), and the Load Command (FcCdL oadCmd) objects are included.

3-33 305-CD-045-001

3.2.4.1 Real-Time Command FormatCommand Initialization: Successful Scenario
for Primary Process

3.24.1.1 Real-Time Command FormatCommand Initialization: Successful for Primary Process
Abstract

The purpose of the "Real-Time Command FormatCommand Initialization: Successful for Primary
Process' scenario is to describe the process by which the FormatCommand software of the
FormatCommand processisinitialized.

Figure 3.2.4.1-1 is the event trace diagram which corresponds to this scenario.

3.24.1.2 Real-Time Command FormatCommand Initialization: Successful Summary Information
Interfaces:
Parameter Server
Data Management Subsystem
Resource Management Subsystem
FormatCommand
FOS User Interface
Stimulus:
The Resource Manager (RMS) starts up the FormatCommand process.
Desired Response:
The Resource Manager receives the status of successful FormatCommand initialization.
Pre-Conditions:
Configuration file must be identified and available.
Post-Conditions:
The FormatCommand is placed in the "wait" state, and ready for directives.

3.24.1.3 Scenario Description

The main operation of the FormatCommand application (FcCmFopAppl) is invoked when the
Resource Manager (RMYS) starts up the process. The command line will contain the |PC address
of the RMS. This address is forwarded to the FcCdCmdController, the controller of the
FormatCommand processing. The IPC addressis used to establish communication with the RMS,
viaFoGnFormatRmslf. Once communication is established, the process waitsfor aninitialization
message from RMS. Upon receipt of the message, the message is read and input parameters are
extracted from the message. These parameters contain |PC addresses which are used to establish
communications with other processes, specifically DMS, TLM, Parameter Server, FOS User
Interface and the FopCommand process. Other parameters include the spacecraft 1D, database ID,
and the process "role" as part of a primary string.

A DMS connection is established via FAEVEventL ogger for events processing.

FoDsFile isthen utilized to access the database file. The file information is used to configure the
FormatCommand attributes and will contain default values for various attributes. This
configuration information is then used to configure the FormatCommand.

3-34 305-CD-045-001

Then several objects which will exist for the life of the string are instantiated.

A successful completion statusis returned to RMS and a " successful initialization" event message
islogged via FdEVEventL ogger.

3-35 305-CD-045-001

9g-€

T00-G70-AD-S0E

FcCdCmdController

initialize ipc,
get RMS address from
command line

initiate

(RMS address

f——tell RMS we are awake————3>

wait for init message

y

FoDsFile

FdEVEventLogger

DMS addi

(DMS add

address for DMS e

FoCmCCSD

p

Yy

Timif

FcCdCmdDatabase

FoGnCmdFuilf

FecdcmdQueue EcMpNameServer - FecgBaseCmd pecdsioredCmd

rent handler and file

f=—————————————————+ead databas}

config FormatCommand
process

b config fil

Figure 3.2.4.1-1. FormatCommand Initialization: Successful for Primary Process

3.2.4.2 Real-Time Command FormatCommand Initialization: Successful Scenario
for Back Up Process

3.24.2.1 Real-Time Command FormatCommand Initialization: Successful for Back Up
Process Abstract

The purpose of the "Real-Time Command FormatCommand I nitialization: Successful for Back Up
Process' scenario is to describe the process by which the FormatCommand software of the
FormatCommand processisinitialized.

Figure 3.2.4.2-1 is the event trace diagram which corresponds to this scenario.

3.24.2.2 Real-Time Command FormatCommand Initialization: Successful Summary Information
Interfaces:
Parameter Server
Data Management Subsystem
Resource Management Subsystem
FormatCommand
FOS User Interface
Stimulus:
The Resource Manager (RMS) starts up the FormatCommand process.
Desired Response:
The Resource Manager receives the status of successful FormatCommand initialization.
Pre-Conditions:
Configuration file must be identified and available.
Post-Conditions:
The FormatCommand is placed in the "wait" state, and ready for directives.

3.24.2.3 Scenario Description

The main operation of the FormatCommand application (FcCmFopAppl) is invoked when the
Resource Manager (RMYS) starts up the process. The command line will contain the |PC address
of the RMS. This address is forwarded to the FcCdCmdController, the controller of the
FormatCommand processing. The IPC addressis used to establish communication with the RMS,
viaFoGnFormatRmslf. Once communication is established, the process waitsfor aninitialization
message from RMS. Upon receipt of the message, the message is read and input parameters are
extracted from the message. These parameters contain |PC addresses which are used to establish
communications with other processes, specifically DMS, TLM, Parameter Server, FOS User
Interface and the FopCommand process. Other parameters include the spacecraft 1D, database ID,
and the process "role" as part of abackup string.

A DMS connection is established via FAEVEventL ogger for events processing.

FoDsFile isthen utilized to access the database file. The file information is used to configure the
FormatCommand attributes and will contain default values for various attributes. This
configuration information is then used to configure the FormatCommand.

3-37 305-CD-045-001

Because it is a backup process, FcCdCmdController reads the snapshot file and does further
configuration based on the valuesiniit.

Then several objects which will exist for the life of the string are instantiated.

A successful completion statusis returned to RM S and a "successful initialization" event message
islogged via FdEVEventL ogger.

3-38 305-CD-045-001

6E-€

T00-G70-AD-S0E

FcCdCmdController Fo R

initialize ipc,
get RMS address from
command line

initiate
(RMS address)

RMS we are

wait for init message

. FdEvEventLogger FoCmCCSDSFopProxy
Y FoDsFile ParameterSever FoGnFormatTImif FcCdCmdDatabase ~ FoGnCmdFuilf ~ FcCdCmdQueue EcMpNameServer FeCdBaseCmd FocdstoredCmd

DMS add:

address for DMS event handler and file

(DMS add

d databasp conig fil

config FormatCommand
process

e——1

and

Figure 3.2.4.2-1.

FormatCommand Initialization: Successful for Back Up Process

3.2.4.3 Real-Time Command FormatCommand Change Authorized User:
Successful Scenario

3.24.3.1 Real-Time Command Format Command Change Authorized User: Successful
Abstract

The purpose of the "Real-Time Command FormatCommand Change Authorized User: Successful”
scenario is to describe the process by which the FormatCommand software of the
FormatCommand process is directed to change its authorized user..

Figure 3.2.4.3-1 is the event trace diagram which corresponds to this scenario.
3.24.3.2 Real-Time Command FormatCommand Change Authorized User: Successful Summary
Information
Interfaces:
Resource Management Subsystem
Stimulus:

The Resource Manager (RMS) sends a message directing FormatCommand to change its
authorized user..

Desired Response:
The Resource Manager receives the status of successful execution of the directive.
Pre-Conditions:
Communi cations established with RMS.
Post-Conditions:
The authorized user has been changed.

3.24.3.3 Scenario Description

RM S sends a directive message via the FoGnRmsFormatProxy to the FcCdCmdController, which
changes the authorized user information and has FoGnFormatRmslIf send a receipt message to
RM S indicating success.

3-40 305-CD-045-001

€

T00-G70-AD-S0E

FoGnCmdController
FoGnRmsFormatProxy FoGnFormatRms|f

sends directive to change authorized user ——>>

changes values
for authorized user

tells to send receipt —— >

sends receipt to RMS

Figure 3.2.4.3-1. FormatCommand Change Authorized User: Successful

3.2.4.4 Real-Time Command Validation: Successful Scenario

32441 Real-Time Command Validation: Successful Abstract

The purpose of the "Real-Time Command Validation: Successful” scenario is to describe the
process by which areal-time command is validated and built. The validation check isdone before
the command is actually built (translated from a mnemonic to a string of bits).

Figure 3.2.4.4-1 is the event trace diagram which corresponds to this scenario.

3.24.4.2 Real-Time Command Validation: Successful Summary Information
Interfaces:

FOS User Interface

Telemetry Subsystem

Data Management Subsystem

UplinkCommand Process
Stimulus:

A command directive is forwarded by FOS User Interface Subsystem.
Desired Response:

FOS User Interface receives the status of successful command validation/generation.
Pre-Conditions:

Database must be identified and loaded.
Post-Conditions:

The command is assembled into the command protocol format. Thisformat is specified as
1553 busfor AM-1.

3.24.4.3 Scenario Description
Note: this scenario is specific to the AM-1 mission.

FoGnCmdFuil F providesto FcCdCmdController areal-time command, in mnemonic format. The
command in the scenario is a critical command for the ASTER instrument.

FcCdCmdController comparesthe ID and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserld and myWksld, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController queries the FcCdCommandDatabase for the requested command and gathers
information about the command. The presence of the command within the database confirms the
most basic syntax check: that the command mnemonic does in fact exist for the spacecraft being
commanded. The query aso reveals that: 1) the command is not a load command, and 2) the
command is for the ASTER instrument. FdEvEventLogger echos the command, and it is
eventually forwarded (by DMS) to the ASTER control center (as a notification message).

FcCdCmdController then uses the information from the database query in the creation of an
FcCdRtCmd object. During its creation, the FcCdRtCmd object is imbedded with information

3-42 305-CD-045-001

supplied by the FcCdCommandDatabase information (such as the binary command, verification
information, prerequisite states, criticality) aswell aswith information about the user who entered
the command. Thus, the object contains all the information it needs to do validation.

FcCdCmdController then invokes the Validate operation of the FcCdRtCmd, which performs the
following:

It does syntax checking of the command directive asitems such as submnemonics (required
and optional; database defined default values are substituted for omitted optional
submnemonics) are validated.

It compares one (1) to four (4) database defined state(s) of the prerequisite telemetry
point(s) against their current state(s). The CheckPrereq operation performs this function.
The prerequisite check is positive if the telemetry points are active (recently updated) and
match the prerequisite states. In this scenario, however, one or more telemetry point(s) is
either inactive or does not meet the prerequisite states, thus yielding a negative prerequisite
check. It then issues a prerequisite override prompt to the USER to respond allow or
cancel. As this is an asynchronous communication, FCCdRtCmd returns control to the
FcCdCmdController, which resumes polling for &l possible messages.
FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FCCARtCmd by invoking its ProcessPrereqRsp operation. The user's
responseisto allow; the proper notifications are made via FdEvEventL ogger and validation
processing continues.

It issues a critical prompt to the USER to respond allow or cancel. As this is an
asynchronous communication, FCCdRtCmd returns control to the FcCdCmdController,
which resumes polling for al possible messages. FcCdCmdController then receives a FUI
message indicating the user'sresponse. It passes this response to FcCdRtCmd by invoking
its ProcessCriticalRsp operation. The user's response is to allow, the proper notifications
are made via FAEVEventL ogger and control returns to FcCdCmdController.

The command is now successfully validated and ready to be built.

FcCdCmdController invokesthe Build operation of the FcCdRtCmd object, the end result of which
isacommand built according to the command protocol: 1553 bus.

The completed command consists of a command destination, a command descriptor and,
optionally, the command data.

The command destination consists of the following:
a database defined Remote Terminal 1D, which is supplied to the object upon creation
a database defined Subaddress, also supplied to object upon creation.
aWord Count, which is derived from the length of the command data.
The Command Descriptor consists of the following:
a database defined Command Type, which is supplied to the object upon creation.

a Word count, which is derived from the length of the command data (serial commands
only)
a database defined Board address, which is supplied to the object upon creation.

3-43 305-CD-045-001

a Channel select, which defines the BDU to be used

a database defined Command Channel, which is supplied to the object upon creation.
The Command data:

The database defines whether or not the data will be present, and if present, the size.

The values of the data (if present) are either:

1) database defined, and supplied to the object upon creation

2) defined by the user, through submnemonic specification

3) have default values which are database defined, and overridable by the user through
submnemonic specification

The command is now successfully generated, and an acknowledgment messagesis returned to user
interface. The command is forwarded to the UplinkCommand process via
FcCmCCSDSFop-Proxy, and then added to the queue.

3-44 305-CD-045-001

w
S
Q1
(@)
¢
G
o)
S
|

FoGnCmdFuilF FoCmCCSDSFopProxy Fecdem
FoanCmdFuiProxy FeCdCmdControler FeCdCommandDatabase FeCdCmdDet FeCdRiCmd FoGnCmdTIMProxy FdEvEventLogger cCdCmdQueue
{— provides Directives —3>{
Check
jser
Authorization
|— Request Cmd Def —3>
Request DB info ——3>1
o8
[<€— Provides Cmd Def——
& Noify ASTER
@
F—
Check
submnemonic
successiul
f— access prerequisite —3>1
check tm
log prereq chedk overide ——— 3
rompis for overid
for_¢
f— send ALLOW resp. —3>}
provide prerequisite response
—
Process
Prereq. resp.
ﬁl citical
plompis for criical
returns prompt_for_permission statuf ————————————1
f— send ALLOW resp. —3>]
provide criticalresponse
process
crtical esponse
success
successiul
—
build cmd
command
w©al

Figure 3.2.4.4-1. Real-Time Command Validation: Successful Event Trace

3.2.4.5 Real-Time Command Validation: No Command Definition Scenario

3.245.1 Real-Time Command Validation: No Command Definition Abstract

The purpose of the "Real-Time Command Validation: No Command Definition" scenario is to
describe the process by which arequest to issue an erroneous command is rejected.

Figure 3.2.4.5-1 is the event trace diagram which corresponds to this scenario.

3.24.5.2 Real-Time Command Validation: No Command Definition Summary Information
Interfaces:

FOS User Interface

Data Management Subsystem
Stimulus:

A erroneous command directive is forwarded by FOS User Interface Subsystem.
Desired Response:

FOS User Interface receives the status of the failed command.
Pre-Conditions:

Database must be identified and loaded.
Post-Conditions:

None.

3.24.53 Scenario Description
Note: this scenario is specific to the AM-1 mission.
FoGnCmdFuil F provides to FcCdCmdController a real-time command in mnemonic format.

FcCdCmdController comparesthe ID and workstation of theissuer of the command against the ID
of the currently authorized operator and workstation, myUserld and myWksld, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController queries the FcCdCommandDatabase for the requested command, but the
command mnemonic is not found. FcCdCmdController then echoes a command/error message
and returns to User Interface the failure status.

3-46 305-CD-045-001

LV-€

T00-G70-AD-S0E

FoGnCmdFuiProxy FoGnCmdFuilF

<&——— provide

—— Send Cmd Directive —>>1

error status

FcCdCmdController

Check
User
Authorization

—————— Request DB info ——>>

<&—— cmd not found

echo commar

FcCdCommandDatabase

d / log error

FdEvEventLogger

Figure 3.2.4.5-1. Real Time Command Validation: No command definition

3.2.4.6 Real-Time Command Validation: Fail Submnemonic Check Scenario

3.24.6.1 Real-Time Command Validation: Fail Submnemonic Check Abstract

The purpose of the "Rea-Time Command Validation: Fail Submnemonic Check" scenario is to
describe the process by which a real-time command with a error in a submnemonic specification
isreected.

Figure 3.2.4.6-1 is the event trace diagram which corresponds to this scenario.

3.2.4.6.2 Real-Time Command Validation: Fail Submnemonic Check Summary Information
Interfaces:

FOS User Interface

Data Management Subsystem
Stimulus:

A command directive with a submnemonic error is forwarded by FOS User Interface
Subsystem.

Desired Response:

FOS User Interface receives the status of the failed command.
Pre-Conditions:

Database must be identified and loaded.
Post-Conditions:

None.

3.2.4.6.3 Scenario Description
Note: this scenario is specific to the AM-1 mission.

FoGnCmdFuil F provides to FcCdCmdController areal-time command in mnemonic format. The
command in the scenario is acritical command for the ASTER instrument.

FcCdCmdController comparesthe 1D and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserld and myWksld, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController queries the FcCdCommandDatabase for the requested command and gathers
information about the command. The presence of the command within the database confirms the
most basic syntax check: that the command mnemonic does in fact exist for the spacecraft being
commanded. The query also reveals that: 1) the command is not a load command and 2) the
command for the ASTER instrument. FdEVEventL ogger echoesthe command, and it iseventually
forwarded (by DMS) to the ASTER control center (as a notification message).

FcCdCmdController then uses the information from the database query in the creation of an
FcCdRtCmd object. During its creation, the FcCdRtCmd object is imbedded with information
supplied by the FcCdCommandDatabase information (such as the binary command, verification
information, prerequisite states, criticality) aswell aswith information about the user who entered
the command. Thus, the object contains all the information it needs to do validation.

3-48 305-CD-045-001

FcCdCmdController then invokes the Validate operation of the FcCdRtCmd, which performs
syntax checking of the command directive as items such as submnemonics (required and optional;
database defined default values are substituted for omitted optional submnemonics) are validated.
During this check, the submnemonic error is detected. FCCARtCmd issues an error status message
to ASTER via FdEvVEventL ogger, and returns to User Interface the failure status.

3-49 305-CD-045-001

0S-€

T00-G70-AD-S0E

. FdEvEventLogger
FoGnCmdFuiProxy FoGnCmdFuilF FcCdCmdController FcCdCommandDatabase FcCdCmdDef FcCdRtCmd VeV 99

provide directives —>>|

Check
User
Authorization

—— Request Cmd Def —>>1

——— Request DB info ———>>f
[<&—— Provides DB info ———

I<&— Provides Cmd Def —

Echo Cmd & Notify ASTER >

init & validate >>

1
Check
submnemonic

log error msg / >
send ASTER status

<< send error status

<< Return unsuccessful validation

Figure 3.2.4.6-1. Real Time Command Validation: Fail Submnemonic check

3.2.4.7 Real-Time Command Validation: Fail Due to No Override Scenario

3.24.7.1 Real-Time Command Validation: Fail Due to No Override Abstract

The purpose of the "Real-Time Command Validation: Fail Due to No Override" scenario is to
describe the process by which the processing of a real-time command is terminated once
1) prerequisite checking has failed, and 2) the operator indicates "cancel" to the subsequent
prerequisite override prompt.

Figure 3.2.4.7-1 is the event trace diagram which corresponds to this scenario.

3.24.7.2 Real-Time Command Validation: Fail Due to No Override Summary Information
Interfaces:

FOS User Interface

Telemetry Subsystem

Data Management Subsystem
Stimulus:

A command directive destined to fail prerequisite state checking isforwarded by FOS User
Interface Subsystem.

Desired Response:

FOS User Interface receives the completion status of the command.
Pre-Conditions:

Database must be identified and loaded.
Post-Conditions:

None.

3.24.7.3 Scenario Description
Note: this scenario is specific to the AM-1 mission.

FoGnCmdFuil F provides to FcCdCmdController areal-time command in mnemonic format. The
command in the scenario is a critical command, for the ASTER instrument.

FcCdCmdController comparesthe 1D and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserld and myWksld, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController queries the FcCdCommandDatabase for the requested command and gathers
information about the command. The presence of the command within the database confirms the
most basic syntax check: that the command mnemonic does in fact exist for the spacecraft being
commanded. The query also reveals that: 1) the command is not a load command and 2) the
command for the ASTER instrument. FdEVEventL ogger echoesthe command, and it iseventually
forwarded (by DMS) to the ASTER control center (as a notification message).

FcCdCmdController then uses the information from the database query in the creation of an
FcCdRtCmd object. During its creation, the FcCdRtCmd object is imbedded with information

3-51 305-CD-045-001

supplied by the FcCdCommandDatabase information (such as the binary command, verification
information, prerequisite states, criticality) aswell aswith information about the user who entered
command. Thus, the object contains all the information it needs to do validation.

FcCdCmdController then invokes the Validate operation of the FcCdRtCmd which performs the
following:

It does syntax checking of the command directive asitems such as submnemonics (required
and optional; database defined default values are substituted for omitted optional
submnemonics) are validated.

It compares one (1) to four (4) database defined state(s) of the prerequisite telemetry
point(s) against their current state(s). The CheckPrereq operation performs this function.
The prerequisite check is positive if the telemetry points are active (recently updated) and
match the prerequisite states. In this scenario, however, one or more telemetry point(s) is
either inactive or does not meet the prerequisite states, thus yielding a negative prerequisite
check. It then issues a prerequisite override prompt to the USER to respond allow or
cancel. As this is an asynchronous communication, FCCdRtCmd returns control to the
FcCdCmdController, which resumes polling for &l possible messages.
FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FCCARtCmd by invoking its ProcessPrereqRsp operation. The user's
response is to cancel. This response is forwarded to the FcCdRtCmd object which, via
FdEVEventL ogger, logs the error message and notifies the ASTER ICC of the completion
status. FcCdRtCmd then returns to User Interface the command acknowledgment.

3-52 305-CD-045-001

€G-€

T00-G70-AD-S0E

FoGnCmdFuilF

FoGnCmdFuiProxy FcCdCmdController FeCdCommandDatabase FeCdCmdDef FeCdRiCmd FoGnCmdTImProxy FdEVEventLogger
provide directives ~——3=1
Check
User
Authorization
— RequestCmd Def —>{
Request DB info ————={
[<&—— Provides DB info
[<€— Provides Cmd Def ——
Echo Cmd & Notify ASTER >
init & validate >
— 1
Check
'submnemonic
chegk >
f—— access prerequisite = —>>{
f<&—— receive telemetry
check tim
log prereq prror ————————————————{
<< Prompts for override aprerea
=< returns prompt_for_override status
l— send CANCELresp. —>=
provide response >
Process
Prered. resp.
log error nfsg /
send ASTER status >
<< ack done
=3 return status

Figure 3.2.4.7-1. Real Time Command Validation: No Prerequisite override

3.2.4.8 Real-Time Command Validation: Fail Due to Cancel Critical Scenario

3.248.1 Real-Time Command Validation: Fail Due to Cancel Critical Abstract

The purpose of the "Real-Time Command Validation: Fail Due to Cancel Critical" scenario isto
describe the process by which a critical real-time command is terminated when the operator
indicates "cancel" to the critical prompt.

Figure 3.2.4.8-1 is the event trace diagram which corresponds to this scenario.

3.2.4.8.2 Real-Time Command Validation: Fail Due to Cancel Critical Summary Information
Interfaces:

FOS User Interface

Telemetry Subsystem

Data Management Subsystem
Stimulus:

A command directive for a critical command is forwarded by FOS User Interface
Subsystem.

Desired Response:

FOS User Interface receives the status of successful command validation/generation.
Pre-Conditions:

Database must be identified and loaded.
Post-Conditions:

None.

3.2.4.8.3 Scenario Description
Note: this scenario is specific to the AM-1 mission.

FoGnCmdFuil F provides to FcCdCmdController areal-time command in mnemonic format. The
command in the scenario is a critical command for the ASTER instrument.

FcCdCmdController comparesthe ID and workstation of theissuer of the command against the ID
of the currently authorized operator and workstation, myUserld and myWksld, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController queries the FcCdCommandDatabase for the requested command and gathers
information about the command. The presence of the command within the database confirms the
most basic syntax check: that the command mnemonic does in fact exist for the spacecraft being
commanded. The query aso reveals that: 1) the command is not a load command, and 2) the
command for the ASTER instrument. FdEVEventL ogger echoesthe command, and it iseventually
forwarded (by DMS) to the ASTER control center (as a notification message).

FcCdCmdController then uses the information from the database query in the creation of an
FcCdRtCmd object. During its creation, the FcCdRtCmd object is imbedded with information
supplied by the FcCdCommandDatabase information (such as the binary command, verification

3-54 305-CD-045-001

information, prerequisite states, criticality) aswell as with information about the user who entered
command. Thus, the object contains all the information it needs to do validation.

FcCdCmdController then invokes the Validate operation of the FcCdRtCmd which performs the
following:

It does syntax checking of the command directive asitems such as submnemonics (required
and optional; database defined default values are substituted for omitted optional
submnemonics) are validated.

It compares one (1) to four (4) database defined state(s) of the prerequisite telemetry
point(s) against their current state(s). (The CheckPrereq operation performsthisfunction.)
The prerequisite check is positive if the telemetry points are active (recently updated), and
match the prerequisite states. In this scenario, however, one or more telemetry point(s) is
either inactive or does not meet the prerequisite states, thus yielding anegative prerequisite
check. It then issues a prerequisite override prompt to the USER to respond allow or
cancel. As this is an asynchronous communication, FCCdRtCmd returns control to the
FcCdCmdController, which resumes polling for al possible messages.
FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FCCARtCmd by invoking its ProcessPrereqRsp operation. The user's
responseisto allow; the proper notifications are made via FdEVEventL ogger and validation
processing continues.

It issues a critical prompt to the USER to respond alow or cancel. As this is an
asynchronous communication, FCCdRtCmd returns control to the FcCdCmdController
which resumes polling for al possible messages. FcCdCmdController then receives a FUI
message indicating the user'sresponse. It passes this response to FcCdRtCmd by invoking
its ProcessCriticalRsp operation. The user's response is to cancel. This response is
forwarded to the FcCdRtCmd object which, via FAdEVEventL ogger, logs the error message
and notifies the ASTER ICC of the completion status. FcCdRtCmd then returns to User
Interface the command acknowledgment.

3-55 305-CD-045-001

9G-€

T00-G70-AD-S0E

FoGnCmdFuiProxy

FoGnCmdFuilF

FcCdCmdController FeCdCommandDatabase FeCdCmdDef FeCdRCmd FoGnCmdTImProxy FdEvEventLogger
Send Cmd Directive ~ ——3>]
Check
User
Authorization
— RequestCmd Def —3=|
Request DB info ————=|
[<&—— Provides DB info
<=— Provides Cmd Def ——
Echo Cmd & Notify ASTER
init & validate
Check
submnemonic
ic chepk
l—— access prerequisite —>=|
[<€—— receive telemetry
check tim
Prompts for override
retumns prompt_for_override status
send ALLOW resp. ——3={
provide response
Process
Prereq. resp.
ched
check critical
prompts for critical command
retums prompt_for_j ion status
send CANCEL resp. —_—
provide critical response
process
critical response
log error psg / |
send ASTER status >
Ack done
return validation

Figure 3.2.4.8-1. Real Time Command Validation: Cancel critical

3.2.4.9 Stored Command Validation Scenario

3.249.1 Stored Command Validation Abstract

The purpose of the "Stored Command Validation" scenario is to describe the process by which a
previously uplinked stored command is validated.

Figure 3.2.4.9-1 is the event trace diagram which corresponds to this scenario.

3.24.9.2 Stored Command Validation Summary Information
Interfaces:

FOS User Interface

Telemetry Subsystem

Data Management Subsystem
Stimulus:

A previously uplinked stored command is forwarded by FOS User Interface Subsystem.
Desired Response:

The stored command is successfully validated.
Pre-Conditions:

Database must be identified and loaded.
Post-Conditions:

None.

3.2.4.9.3 Scenario Description
Note: this scenario is specific to the AM-1 mission.

FoGnCmdFuilF provides to FcCdCmdController a previously uplinked, stored command in
mnemonic format.

FcCdCmdController comparesthe 1D and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserld and myWksld, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController queries the FcCdCommandDatabase for the requested command and gathers
information about the command. The presence of the command within the database confirms the
most basic syntax check: that the command mnemonic does in fact exist for the spacecraft being
commanded.

3-57 305-CD-045-001

FcCdCmdController then uses the information from the database query to create an FcCdCmd
object. During its creation, the FcCdCmd object is imbedded with verification information
supplied by the FcCdCommandDatabase.

FcCdCmdController then adds the FcCdCmd object onto the FcCdCmdQueue to be verified.

The command is now successfully validated. FcCdCmdController invokes the PutResponse
function of the FoGnCmdFuiProxy to return an acknowledgment to user interface.

3-58 305-CD-045-001

6G-€

T00-G70-AD-S0E

FoGnCmdFuiProxy

. FcCdCmdDef
FoGnCmdFuilF FcCdCmdController FcCdCommandDatabase
provides Directive ——>
check
User
Authorization
request cmd ;
definition

definition

§ provide cmd

echo ¢

—request DB info—>

<Z-provide DB info—

ommand

FdEvaentLoggerFCCdCmdQueue

ack done

add to queue

Figure 3.2.4.9-1. Stored Command Validation: Verification required

3.2.4.10 Stored Command Validation - No Verification Scenario

3.2.4.10.1 Stored Command Validation - No Verification Abstract

The purpose of the "Stored Command Validation - No Verification" scenario is to describe the
process by which a previously uplinked stored command for which no command verification is
specified, is validated.

Figure 3.2.4.10-1 is the event trace diagram which corresponds to this scenario.

3.2.4.10.2 Stored Command Validation - No Verification Summary Information
Interfaces:

FOS User Interface

Telemetry Subsystem

Data Management Subsystem
Stimulus:

A previously uplinked stored command, for which no command verification is specified, is
forwarded by FOS User Interface Subsystem.

Desired Response:
The stored command is successfully validated, but not added to the queue of commandsto
be verified.
Pre-Conditions:
Database must be identified and loaded.
Post-Conditions:
None.

3.2.4.10.3 Scenario Description
Note: this scenario is specific to the AM-1 mission.

FoGnCmdFuilF provides to FcCdCmdController a previously uplinked, stored command in
mnemonic format.

FcCdCmdController comparesthe 1D and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserld and myWksld, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController queries the FcCdCommandDatabase for the requested command and gathers
information about the command. The presence of the command within the database confirms the
most basic syntax check: that the command mnemonic does in fact exist for the spacecraft being
commanded.

FcCdCmdController then uses the information from the database query to check if verification is
required for the command. No verification is required, so an event message is issued via
FdEvEventL ogger to that effect, and FcCdCmdController invokes the PutResponse function of the
FoGnCmdFuiProxy to return an acknowledgment to user interface.

3-60 305-CD-045-001

19-€

T00-G70-AD-S0E

FoGnCmdFuiProxy

FoGnCmdFuilF

———yprovides Directive —>>

FcCdCmdController

FdEVEventLogger
FcCdCommandDatabase FeCdCmadDef g9
check
User
Authorization
request cmd >
definition
—request DB info—>>
l<&—provide DB info—
< provide cmd |
definition
No Verification
Specified
echo command| stating no verification —————>>;

ack done

Figure 3.2.4.10-1. Stored Command Validation: No Verification required

FcCdCmdQueue

3.24.11 Write Configuration Snapshot Request Scenario

3.2.4.11.1 Write Configuration Snapshot Request Abstract

The purpose of the "Write Configuration Snapshot Request” scenario isto describe the process by
which the current state of a FormatCommand process is stored.

Figure 3.2.4.11-1 is the event trace diagram which corresponds to this scenario.

3.2.4.11.2 Write Configuration Snapshot Request Summary Information
Interfaces:

Resource Manager Interface

Data Management Subsystem
Stimulus:

A "Configuration Snapshot Request” is forwarded by the Resource Manager Subsystem.
Desired Response:

The Resource Manager is notified of the completion.

Pre-Conditions:

Database must be identified and loaded.
Post-Conditions:

The state information is stored in the specified file.

3.2.4.11.3 Scenario Description

A Resource Managment "Configuration Snapshot Request” request is accepted by the Command
Controller. The snapshot file specified in therequest is accessed viaFoDsFile, and the current state
information is stored into the file. A successful statusis returned to the Resource Manager.

3-62 305-CD-045-001

€9-€

T00-G70-AD-S0E

FoGnCmdRmsIF

FcCdCmdController

write config snapshot request ————>>

Return Status

——— Store Config info ﬁ

FoDsFile

Figure 3.2.4.11-1. Write Configuration Snapshot request

3.2.4.12 Read Configuration Snapshot Request Scenario

3.2.4.12.1 Read Configuration Snapshot Request Abstract

The purpose of the "Read Configuration Snapshot Request” scenario isto describe the process by
which the FormatCommand process is restored to a predetermined state.

Figure 3.2.4.12-1 is the event trace diagram which corresponds to this scenario.

3.2.4.12.2 Read Configuration Snapshot Request Summary Information
Interfaces:

Resource Manager Interface

Data Management Subsystem
Stimulus:

A request to "Read Configuration Snapshot” is forwarded by the Resource Manager
Subsystem.

Desired Response:

The Resource Manager is notified of the completion.
Pre-Conditions:

None.
Post-Conditions:

The FormatCommand process is reconfigured.

3.2.4.12.3 Scenario Description

A Resource Management "Read Configuration Snapshot” request is accepted by the Command
Controller. The snapshot file specified inthe request is accessed via FoDsFile, and the information
retrieved is used to update the state of the FormatCommand process. A successful status is
returned to the Resource Manager.

3-64 305-CD-045-001

G9-€

T00-G70-AD-S0E

FoGnCmdRmsIF

FcCdCmdController

—+—+read request snapshot request——>>

Upd

A

Return Status

FoDsFile

request config info ——————>>

late Config

provide config info

Figure 3.2.4.12-1. Read Configuration Snapshot request

3.2.4.13 Load Command Validation: Successful Scenario

3.2.4.13.1 Load Command Validation: Successful Abstract

The purpose of the"Load Command Validation: Successful" scenario isto describe the process by
which aload file is processed for uplinking.

Figure 3.2.4.13-1 is the event trace diagram which corresponds to this scenario.

3.2.4.13.2 Load Command Validation: Successful Summary Information
Interfaces:

FOS User Interface

Data Management Subsystem

FopCommand
Stimulus:

A load directive is forwarded by FOS User Interface Subsystem.
Desired Response:

FOS User Interface receives the status of successful load command validation.
Pre-Conditions:

Catalog Entry and data for the load exist.
Post-Conditions:

The contents of the load file have been forwarded to FopCommand.

3.2.4.13.3 Scenario Description

FoGnCmdFuilF provides to FcCdCmdController a rea-time directive. The directive in the
scenario is aload directive to process aload with critical commands.

FcCdCmdController comparesthe 1D and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserld and myWksld, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController then creates an FcCdLoadCmd object. The FcCdLoadCmd object, in turn,
instantiates a FcCdLoadData object and initializes it with the Loadld. It then invokes the Init
operation of FcCdLoadData. In this operation, the load catalog entry and data (i.e., the load
packets) areread in. Theload catalog entry contains: critical flag, destination, spacecraft ID, Time
window, CRC, number of packets for the load (or partition of load), information for telemetry
verification (telemetry PID and timeout/wait interval), and information for prerequisite check (Pid,
prerequisite type and ranges). The FcCdLoadCmd object then invokes the GetParameters
operation of the FcCdL oadData object to obtain information for telemetry verification.

FcCdCmdController then invokes the Validate operation of the FcCdLoadCmd, which performs
the following:

It ensures that the load file is intended for the spacecraft being commanded by the current
process.

3-66 305-CD-045-001

It ensures that the current time is within the valid window period of time specified in the
header.

It ensures that al prior partitions for this load have been uplinked. In this scenario, either
one or more prior partitions have not been uplinked or the current load/partition was
uplinked previously. The FcCdL oadData then issues a prompt to the user to respond allow
or cancel. As this is an asynchronous communication, FcCdLoadData returns a status
indicating waiting for user's response to FcCdL oadCmd which in turn returns control to the
FcCdCmdController.

FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdL oadCmd by invoking its ProcessPartitionRsp operation. The user's
response is "dlow" and validation processing continues. The ProcessPartitionRsp
operation log event via FdEvEventLogger and performs the following:

It compares one (1) to four (4) database defined state(s) of the prerequisite telemetry
point(s) against their current state(s). (The CheckPrereq operation performsthisfunction.)
The prerequisite check is positive if the telemetry points are active (recently updated), and
match the prerequisite states. In this scenario, however, one or more telemetry point(s) is
either inactive or does not meet the prerequisite states, thus yielding a negative prerequisite
check. It then issues a prerequisite override prompt to the user to respond allow or cancel.
As this is an asynchronous communication, FcCdLoadCmd returns control to the
FcCdCmdController.

FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdLoadCmd by invoking its ProcessPrereqRsp operation. The user's
response is to allow; FcCdLoadCmd sends an event message via FAEvVEventLogger and
validation processing continues.

FcCdLoadCmd issues acritical prompt to the user to respond allow or cancel. Asthisisan
asynchronous communication, FcCdL oadCmd returns control to the FcCdCmdController,
which resumes polling for al possible messages. FcCdCmdController then receives a FUI
message indicating the user's response. It passes this response to FcCdLoadCmd by
invoking its ProcessCriticalRsp operation. The user's response is to allow, the proper
notifications are made via FAdEVEventL ogger and control returns to FcCdCmdController.

The load command is now successfully validated and the content is ready to be processed.

The load file is comprised of CCSDS packets. FcCdCmdController processes each packet in the
file asfollows:

It invokes the SendL oad operation of FcCdL oadCmd, which invokes the SendPacket operation of
FcCdLoadData. This operation forwards one packet a a time to FopCommand via
FoGnCmdFopProxy. FcCdCommandController waits for acknowledgment from FopCommand
(via FoGnCmdFoplF) before proceeding to the next packet in the load file (a return status to
FcCdCommandController indicates when the last packet of the load has been sent out).

Upon acknowledgment of the last packet, FcCdCommandController notifies FUI (via
FjoGnCmdFuilF) of completion of its request, and adds the FcCdLoadCmd to the queue of
commands waiting verification.

3-67 305-CD-045-001

89-€

T00-G70-AD-S0E

cccccccccc

uuuuuuuuuuuuu

»»»»»»»»»»»»»

= —
f—— senoauow —
R — =
=
fe—
e
e
(- —
. — —=
I —=
e
e
‘‘‘‘‘‘‘‘‘
fe—
=
f— sewsau ow —==
| -
— o —]
-
b mmimsm
— o —
— e —
= -
= s o

Figure 3.2.4.13-1. Load Command Validation: Successful Event Trace

3.24.14 Load Command Validation: Fail Due to Missing Load Scenario

3.2.4.14.1 Load Command Validation: Fail Due to Missing Load Abstract

The purpose of the"Load Command Validation: Fail Dueto Missing Load" scenario isto describe
the process by which the load is not uplinked due to missing load data.

Figure 3.2.4.14-1 is the event trace diagram which corresponds to this scenario.

3.2.4.14.2 Load Command Validation: Fail Due to Missing Load Summary Information
Interfaces:

Resource Manager Interface

Data Management Subsystem
Stimulus:

A load directive is forwarded by FOS User Interface Subsystem.
Desired Response:

The Resource Manager is notified of the completion.
Pre-Conditions:

None.
Post-Conditions:

The FormatCommand process is reconfigured.

3.2.4.14.3 Scenario Description

FoGnCmdFuilF provides to FcCdCmdController a real-time directive. The directive in the
scenario is aload directive to process aload with critical commands.

FcCdCmdController comparesthe 1D and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserld and myWksld, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController then creates an FcCdLoadCmd object. The FcCdLoadCmd object, in turn,
instantiates a FcCdLoadData object and initializes it with the Loadld. It then invokes the Init
operation of FcCdLoadData. In this operation, the load catalog entry and data (i.e., the load
packets) areread in. Theload catalog entry contains: critical flag, destination, spacecraft ID, Time
window, CRC, number of packets for the load (or partition of load), information for telemetry
verification (telemetry PID and timeout/wait interval), and information for prerequisitecheck (Pid,
prerequisite type and ranges). In this scenario, there is no load data corresponding to the Loadld.
The FcCdL oadData object logs an error message to FdEVEventL ogger, provides error statusto FUI
and returns unsuccessful status to FcCdLoadCmd, which , in turn, returns unsuccessful status to
FcCdCmdController.

3-69 305-CD-045-001

0L-€

T00-G70-AD-S0E

FoGnCmdFuiProxy

FoGnCmdFuilF

Load directive >

FcCdCmd

Provides

provide €

FcCdLoadData

FcCdLoadCmd

Controller

]

user authorized
successful

e

—init & Validate—>>|

rror status

Init———>>

FoDsFile

| Request Load
Data >

&load not found

———-~og error

return unsuccessful
status b

@turn unsuccessful
status R

request parameter:

—provide parametg

message ———>>

FdEvEventLogger
FolLdCatalogEntry

=

S

Figure 3.2.4.14-1. Load Command Validation: Unsuccessful due to missing load

3.2.4.15 Load Command Validation: Fail Due to Invalid Parameter Scenario

3.2.4.15.1 Load Command Validation: Fail Due to Invalid Parameter Abstract

The purpose of the "Load Command Validation: Fail Due to Invalid Parameter” scenario is to
describe the process by which the load is not uplinked due to invalid load parameters.

Figure 3.2.4.15-1 is the event trace diagram which corresponds to this scenario.

3.2.4.15.2 Load Command Validation: Fail Due to Invalid Parameter Summary Information
Interfaces:

Resource Manager Interface

Data Management Subsystem
Stimulus:

A load directive is forwarded by FOS User Interface Subsystem.
Desired Response:

The Resource Manager is notified of the completion.
Pre-Conditions:

None.
Post-Conditions:

The FormatCommand process is reconfigured.

3.2.4.15.3 Scenario Description

FoGnCmdFuilF provides to FcCdCmdController a real-time directive. The directive in the
scenario is aload directive to process aload with critical commands.

FcCdCmdController comparesthe 1D and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserld and myWksld, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController then creates an FcCdLoadCmd object. The FcCdLoadCmd object, in turn,
instantiates a FcCdLoadData object and initializes it with the Loadld. It then invokes the Init
operation of FcCdLoadData. In this operation, the load catalog entry and data (i.e., the load
packets) areread in. Theload catalog entry contains: critical flag, destination, spacecraft ID, Time
window, CRC, number of packets for the load (or partition of load), information for telemetry
verification (telemetry PID and timeout/wait interval), and information for prerequisite check (Pid,
prerequisite type and ranges). The FcCdLoadCmd object then invokes the GetParameters
operation of the FcCdL oadData object to obtain information for telemetry verification.

FcCdCmdController then invokes the Validate operation of the FcCdLoadCmd, which first
performs the validation of load parameters:

It ensures that the load file is intended for the spacecraft being commanded by the current
process.

371 305-CD-045-001

It ensuresthat the current timeiswithin the valid window period of time specified in the header.

In this scenario, either the spacecraftlds are not the same or the current time is outside the valid
time window. The FcCdLoadData then logs an error message via FAEVEventL ogger, sends an
error statusto FUI, and returns failure status to FcCdL oadCmd, which, in turn, return unsuccessful

status to FcCdCmdController.

3-72 305-CD-045-001

€L€E

T00-G70-AD-S0E

FoGnCmdFuiProxy

FoGnCmdFuilF

Provides
Load directive

—>

Provides

FcCdCmdController

user authorized
successful

—init & Validate —>>

FcCdLoadCmd

——— Init———>>|

< Return Success _|
status

|— request params >

<&~ provide params —|

Validate ——=>

FcCdLoadData

FdEVEventLogger

FoDsFile FoLdCatalogEntry

request parameters >

<&————+Fprovide parametefs

| Request Load >
Data

< Provides Load __|
Data

Validate
Parameters

————Log error message ————>>

error status

greturn Unsuccessful _|
validation

< Return Failure__|
status

Figure 3.2.4.15-1. Load Command Validation: Unsuccessful due to Invalid Parameters

3.2.4.16 Load Command Validation: Fail Due to Cancel Out-of-Ordered
Partition Scenario

3.2.4.16.1 Load Command Validation: Fail Due to Cancel Out-of-Ordered Partition Abstract

The purpose of the "Load Command Validation: Fail Due to Cancel Out-of-Ordered Partition”
scenario is to describe the process by the load is not uplinked when user indicates Cancel to the
Override-Out-of-Ordered prompt.

Figure 3.2.4.16-1 is the event trace diagram which corresponds to this scenario.
3.24.16.2 Load Command Validation: Fail Due to Cancel Out-of-Ordered Partition Summary
Information
Interfaces:

Resource Manager Interface

Data Management Subsystem
Stimulus:

A load directive is forwarded by FOS User Interface Subsystem.
Desired Response:

The Resource Manager is notified of the completion.
Pre-Conditions:

One or more previous partitions have not been uplinked or the current load/partition was
already uplinked.

Post-Conditions:
The FormatCommand process is reconfigured.

3.2.4.16.3 Scenario Description

FoGnCmdFuilF provides to FcCdCmdController a real-time directive. The directive in the
scenario is aload directive to process aload with critical commands.

FcCdCmdController comparesthe 1D and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserld and myWksld, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController then creates an FcCdLoadCmd object. The FcCdLoadCmd object, in turn,
instantiates a FcCdLoadData object and initializes it with the Loadld. It then invokes the Init
operation of FcCdLoadData. In this operation, the load catalog entry and data (i.e., the load
packets) areread in. Theload catalog entry contains: critical flag, destination, spacecraft ID, Time
window, CRC, number of packets for the load (or partition of load), information for telemetry
verification (telemetry PID and timeout/wait interval), and information for prerequisite check (Pid,
prerequisite type and ranges). The FcCdLoadCmd object then invokes the GetParameters
operation of the FcCdL oadData object to obtain information for telemetry verification.

FcCdCmdController then invokes the Validate operation of the FcCdLoadCmd, which performs
the following:

3-74 305-CD-045-001

It ensures that the load file is intended for the spacecraft being commanded by the current
process.

It ensures that the current time is within the valid window period of time specified in the
header.

It ensures that all prior partitions for thisload have been uplinked. In this scenario, either
one or more prior partitions have not been uplinked or the current load/partition was
uplinked previously. The FcCdL oadData then issues a prompt to the user to respond allow
or cancel. Asthisis an asynchronous communication, FcCdL oadData returns a status to
FcCdLoadCmd, indicating waiting for user's response, which in turn returns control to the
FcCdCmdController.

FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdLoadCmd by invoking its Process PartitionRsp operation. In this
scenario, the user'sresponseis "cancel". The FcCdLoadCmd object log cancel message to
FdEVEventL ogger, sends an ack to FUI and returns control to FcCdCmdController.

3-75 305-CD-045-001

9/-€

T00-G70-AD-S0E

FoGnCmdFuiProxy FoGnCmdFuilE

e ————

FcCdCmdi

Provides
Load directive

—

prompts for permission

send CANCEL ——=

ack done

Figure 3.2.4.16-1. Load Command Validation: Unsuccessful due to canceling out-of-ordered partition

Controller

user authorized
successful

— init& Validate —==>

[<<— return status

—— provide resp. —==>

FcCdLoadCmd

< Return Success
status

— request params

[<&— provide params

< Return Success
validate

check uplink time

process resp.

return Validation
Unsuccessful

<

Init ———==1

Validate ———=>

log wrong ofder event

log cancgl event

FcCdLoadData

FoDsFile

< Provides Load
Data

—=

Validate

P?rameters

Request Load >
Data

—_—

—_—

FdEvEventLogger

request parameters

FoLdCatalogEntry

provide parameters

3.2.4.17 Load Command Validation: Fail Due to Cancel Prerequisite Override
Scenario

3.2.4.17.1 Load Command Validation: Fail Due to Cancel Prerequisite Override Abstract

The purpose of the "Load Command Validation: Fail Due to Cancel Prerequisite Override'
scenario isto describe the process by which theload is not uplinked when the user indicates cancel
to the prerequisite override prompt.

Figure 3.2.4.17-1 is the event trace diagram which corresponds to this scenario.
3.24.17.2 Load Command Validation: Fail Due to Cancel Prerequisite Override Summary
Information
Interfaces:

Resource Manager Interface

Data Management Subsystem
Stimulus:

A load directive is forwarded by FOS User Interface Subsystem.
Desired Response:

The Resource Manager is notified of the completion.
Pre-Conditions:

None.
Post-Conditions:

The FormatCommand process is reconfigured.

3.2.4.17.3 Scenario Description

FoGnCmdFuilF provides to FcCdCmdController a real-time directive. The directive in the
scenario is aload directive to process aload with critical commands.

FcCdCmdController comparesthe 1D and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserld and myWksld, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController then creates an FcCdLoadCmd object. The FcCdLoadCmd object, in turn,
instantiates a FcCdLoadData object and initializes it with the Loadld. It then invokes the Init
operation of FcCdLoadData. In this operation, the load catalog entry and data (i.e., the load
packets) areread in. Theload catalog entry contains: critical flag, destination, spacecraft ID, Time
window, CRC, number of packets for the load (or partition of load), information for telemetry
verification (telemetry PID and timeout/wait interval), and information for prerequisite check (Pid,
prerequisite type and ranges). The FcCdLoadCmd object then invokes the GetParameters
operation of the FcCdL oadData object to obtain information for telemetry verification.

FcCdCmdController then invokes the Validate operation of the FcCdLoadCmd, which performs
the following:

3-77 305-CD-045-001

It ensures that the load file is intended for the spacecraft being commanded by the current
process.

It ensures that the current time is within the valid window period of time specified in the
header.

It ensures that all prior partitions for thisload have been uplinked. In this scenario, either
one or more prior partitions have not been uplinked or the current load/partition was
uplinked previously. The FcCdL oadData then issues a prompt to the user to respond allow
or cancel. As this is an asynchronous communication, FcCdL oadData returns a status
indicating waiting for user's response to FcCdL oadCmd which in turn returns control to the
FcCdCmdController.

FcCdCmdController then receives a FUI message indicating the user's response. |t passes
this response to FcCdL oadCmd by invoking its ProcessPartitionRsp operation. The user's
response is "alow" and validation processing continues. The ProcessPartitionRsp
operation log event via FdEvEventL ogger and performs the following:

It compares one (1) to four (4) database defined state(s) of the prerequisite telemetry
point(s) against their current state(s). (The CheckPrereq operation performsthisfunction.)
The prerequisite check is positive if the telemetry points are active (recently updated), and
match the prerequisite states. In this scenario, however, one or more telemetry point(s) is
either inactive or does not meet the prerequisite states, thus yielding a negative prerequisite
check. It then issues a prerequisite override prompt to the USER to respond allow or
cancel. As this is an asynchronous communication, FCCdRtCmd returns control to the
FcCdCmdController.

FcCdCmdController then receives a FUI message indicating the user'sresponse. It passes
this response to FCCARtCmd by invoking its ProcessPrereqRsp operation. The user's
responseisto cancel. The FcCdLoadCmd logs a message via FAEVEventL ogger, sends an
ack to FUI and returns unsuccessful status to FcCdCmdController.

3-78 305-CD-045-001

6.-€

T00-G70-AD-S0E

FoGnCmdFuiProxy

FoGnCmdFuilF

FoLdCatalogEntry

FcCdCmdController FeCdLoadCmd FeCdLoadData FoDsFile FdEVEventLogger
Provides
Load directive =]
user authorized
successful
— init&validate ~——=f
Init
request
provide
| RequestLoad
Data —=
Provides Load
<— Data
Return Success
< status
— request params —_—
f— provide params —
Validate ———==>1
|~ Validate
garameters
Return Success
< validate
check uplink time
log wrong order event
prompts for
l=— reumstatuss ——

send ALLOW ~— ——=={

prompts for override

send CANCEL ~ —==~{

ack done

f— provide resp. —_—

process resp.

log event

check prereq
<&— reumstaus ——
f— provide resp. —_—

process resp.

log fail isite check

<

return Validation
Unsuccessful

Figure 3.2.4.17-1. Load Command Validation: Unsuccessful due to no prerequisite override

3.2.4.18 Load Command Validation: Fail Due to Cancel Critical Scenario

3.2.4.18.1 Load Command Validation: Fail Due to Cancel Critical Abstract

The purpose of the "Load Command Validation: Fail Due to Cancel Critical" scenario is to
describe the process by which theload is not uplinked when the user indicates cancel to the critical
prompt.

Figure 3.2.4.18-1 is the event trace diagram which corresponds to this scenario.

3.2.4.18.2 Load Command Validation: Fail Due to Cancel Critical Summary Information
Interfaces:

Resource Manager Interface

Data Management Subsystem
Stimulus:

A load directive is forwarded by FOS User Interface Subsystem.
Desired Response:

The Resource Manager is notified of the completion.
Pre-Conditions:

None.
Post-Conditions:

The FormatCommand process is reconfigured.

3.2.4.18.3 Scenario Description

FoGnCmdFuilF provides to FcCdCmdController a real-time directive. The directive in the
scenario is aload directive to process aload with critical commands.

FcCdCmdController comparesthe ID and workstation of theissuer of the command against the ID
of the currently authorized operator and workstation, myUserld and myWksld, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController then creates an FcCdLoadCmd object. The FcCdLoadCmd object, in turn,
instantiates a FcCdLoadData object and initializes it with the Loadld. It then invokes the Init
operation of FcCdLoadData. In this operation, the load catalog entry and data (i.e., the load
packets) areread in. Theload catalog entry contains: critical flag, destination, spacecraft ID, Time
window, CRC, number of packets for the load (or partition of load), information for telemetry
verification (telemetry PID and timeout/wait interval), and information for prerequisite check (Pid,
prerequisite type and ranges). The FcCdLoadCmd object then invokes the GetParameters
operation of the FcCdL oadData object to obtain information for telemetry verification.

FcCdCmdController then invokes the Validate operation of the FcCdLoadCmd, which performs
the following:

It ensures that the load file is intended for the spacecraft being commanded by the current
process.

3-80 305-CD-045-001

It ensures that the current time is within the valid window period of time specified in the
header.

It ensures that al prior partitions for this load have been uplinked. In this scenario, either
one or more prior partitions have not been uplinked or the current load/partition was
uplinked previously. The FcCdL oadData then issues a prompt to the user to respond allow
or cancel. As this is an asynchronous communication, FcCdLoadData returns a status
indicating waiting for user's response to FcCdL oadCmd which in turn returns control to the
FcCdCmdController.

FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdL oadCmd by invoking its ProcessPartitionRsp operation. The user's
response is "dlow" and validation processing continues. The ProcessPartitionRsp
operation log event via FdEvEventLogger and performs the following:

It compares one (1) to four (4) database defined state(s) of the prerequisite telemetry
point(s) against their current state(s). (The CheckPrereq operation performsthisfunction.)
The prerequisite check is positive if the telemetry points are active (recently updated), and
match the prerequisite states. In this scenario, however, one or more telemetry point(s) is
either inactive or does not meet the prerequisite states, thus yielding a negative prerequisite
check. It then issues a prerequisite override prompt to the user to respond allow or cancel.
As this is an asynchronous communication, FcCdLoadCmd returns control to the
FcCdCmdController.

FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdLoadCmd by invoking its ProcessPrereqRsp operation. The user's
response is to allow; FcCdLoadCmd sends an event message via FAEvVEventLogger and
validation processing continues.

FcCdLoadCmd issues acritical prompt to the user to respond allow or cancel. Asthisisan
asynchronous communication, FcCdL oadCmd returns control to the FcCdCmdController.

FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdLoadCmd by invoking its ProcessCriticalRsp operation. The user's
responseisto cancel. The FcCdLoadCmd logs a message via FAEVEventL ogger, sends an
ack to FUI and returns unsuccessful status to FcCdCmdController.

3-81 305-CD-045-001

¢8-€

T00-G70-AD-S0E

FoGnCmdFuiProxy FoGnCmdFuilF FcCdCmdController FcCdLoadCmd FcCdLoadData FoDsFile FdEvEventLogger

FolLdCatalogEntry
Provides
Load directive =]
user authorized
successful
—— init&Vvalidate ——>
Init
request
provide
Request Load
Data =
= Return Success P"""[gj:émad
status
— requestparams = —=
l=— provide params —|
Validate
Validate
Rarameters
= Return Success _|
validate
1
check uplink time
|
prompis for log wrong order event
<<— retumnstatus
—— send ALLOW —==
—— provide resp. —_—
process resp.
|
log allow event
1
check prereq
|
prompts for override
<<— retumstatus
—— send ALLOW —===
—— provideresp. —=
1
process resp.
I}
log pass prereq check
1
Check Critical
Log Critical Load Event
Prompt for Critical
Returns
=< Prompt_for_Permission
— Sends CANCEL —=
Provides
— Permissionresp. —=
[Process
grtcal resp.
Log critical command cancele e —.
ack done
= return Validation
Unsuccessful

Figure 3.2.4.18-1. Load Command Validation: Unsuccessful due to canceling critical

3.2.4.19 Load Command Validation: Abort Scenario

3.2.4.19.1 Load Command Validation: Abort Abstract

The purpose of the "Load Command Validation: Abort" scenario is to describe the process by
which aload file processing is stopped via an abort directive.

Figure 3.2.4.19-1 is the event trace diagram which corresponds to this scenario.

3.2.4.19.2 Load Command Validation: Abort Summary Information
Interfaces:

FOS User Interface

Data Management Subsystem

FopCommand
Stimulus:

A load command is forwarded by FOS User Interface Subsystem.
Desired Response:

FOS User Interface receives the status of successful load command validation/generation.
Pre-Conditions:

None.
Post-Conditions:

The contents of the load file have been forwarded to FopCommand.

3.2.4.19.3 Scenario Description

FoGnCmdFuilF provides to FcCdCmdController a rea-time directive. The directive in the
scenario is aload directive to process aload with critical commands.

FcCdCmdController comparesthe 1D and workstation of the issuer of the command against the ID
of the currently authorized operator and workstation, myUserld and myWksld, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

FcCdCmdController then creates an FcCdLoadCmd object. The FcCdLoadCmd object, in turn,
instantiates a FcCdLoadData object and initializes it with the Loadld. It then invokes the Init
operation of FcCdLoadData. In this operation, the load catalog entry and data (i.e., the load
packets) areread in. Theload catalog entry contains: critical flag, destination, spacecraft ID, Time
window, CRC, number of packets for the load (or partition of load), information for telemetry
verification (telemetry PID and timeout/wait interval), and information for prerequisite check
(P(Pid, prerequisite type and ranges). The FcCdLoadCmd object then invokes the GetParameters
operation of the FcCdL oadData object to obtain information for telemetry verification.

FcCdCmdController then invokes the Validate operation of the FcCdLoadCmd, which performs
the following:

It ensures that the load file is intended for the spacecraft being commanded by the current
process.

3-83 305-CD-045-001

It ensures that the current time is within the valid window period of time specified in the
header.

It ensures that al prior partitions for this load have been uplinked. In this scenario, either
one or more prior partitions have not been uplinked or the current load/partition was
uplinked previously. The FcCdL oadData then issues a prompt to the user to respond allow
or cancel. As this is an asynchronous communication, FcCdLoadData returns a status
indicating waiting for user's response to FcCdL oadCmd which in turn returns control to the
FcCdCmdController.

FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdL oadCmd by invoking its ProcessPartitionRsp operation. The user's
response is "dlow" and validation processing continues. The ProcessPartitionRsp
operation log event via FdEvEventLogger and performs the following:

It compares one (1) to four (4) database defined state(s) of the prerequisite telemetry
point(s) against their current state(s). (The CheckPrereq operation performsthisfunction.)
The prerequisite check is positive if the telemetry points are active (recently updated), and
match the prerequisite states. In this scenario, however, one or more telemetry point(s) is
either inactive or does not meet the prerequisite states, thus yielding a negative prerequisite
check. It then issues a prerequisite override prompt to the user to respond allow or cancel.
As this is an asynchronous communication, FcCdLoadCmd returns control to the
FcCdCmdController.

FcCdCmdController then receives a FUI message indicating the user's response. It passes
this response to FcCdLoadCmd by invoking its ProcessPrereqRsp operation. The user's
response is to allow; FcCdLoadCmd sends an event message via FAEvVEventLogger and
validation processing continues.

FcCdLoadCmd issues acritical prompt to the user to respond allow or cancel. Asthisisan
asynchronous communication, FcCdL oadCmd returns control to the FcCdCmdController,
which resumes polling for al possible messages. FcCdCmdController then receives a FUI
message indicating the user's response. It passes this response to FcCdLoadCmd by
invoking its ProcessCriticalRsp operation. The user's response is to allow, the proper
notifications are made via FAdEVEventL ogger and control returns to FcCdCmdController.

The load command is now successfully validated and the content is ready to be processed.

The load file is comprised of CCSDS packets. FcCdCmdController processes each packet in the
file asfollows:

It invokes the SendL oad operation of FcCdL oadCmd, which invokes the SendPacket operation of
FcCdLoadData. This operation forwards one packet a a time to FopCommand via
FoGnCmdFopProxy. FcCdCommandController waits for acknowledgment from FopCommand
(via FoGnCmdFoplF) before proceeding to the next packet in the load file (a return status to
FcCdCommandController indicates when the last packet of the load has been sent out).

In this scenario, after several packets are forwarded to FopCommand, an abort directive is
received. The FcCdCmdController destructsthe FcCdLoadCmd object, whichin turn destructsthe
FcCdLoadData object. The FcCdCmdController then sends an ack to FUI.

3-84 305-CD-045-001

G8-¢€

T00-G70-AD-S0E

»»»»»»»»»»»

,,,,,,,,,,

Facocmaropt

— =
o
—
R — —
e s J—
— o ow I, .
(((((
‘‘‘‘‘ @
mmmmmmmmmmm =
e s J—
R —— —
"""""""""
e
Coecitea
e
=< Frome 5 Femsson
— Permissaniess. =
i
~<— e —
IS —
m= _
IS —
< o s —

Figure 3.2.4.19-1. Load Command: Abort Load

3.2.4.20 Real-Time Command Verification: Success Scenario

3.2.4.20.1 Real-Time Command Verification: Success Abstract

The purpose of the "Real-Time Command Verification: Success' scenario is to describe the
process by which real time commands are telemetry verified.

Figure 3.2.4.20-1 is the event trace diagram which corresponds to this scenario.

3.2.4.20.2 Real-Time Command Verification: Success Summary Information
Interfaces:

FOS User Interface

Data Management Subsystem

Telemetry Subsystem

FopCommand
Stimulus:

A command receipt is received from FopCommand.
Desired Response:

User Interface is notified of telemetry verification of the command.
Pre-Conditions:

The command queue contains at least one command: the command corresponding to the
command receipt mentioned above.

Post-Conditions:

The command corresponding to the command recei pt has been removed from the command
queue.

3.2.4.20.3 Scenario Description

FcCdCommandController receives a command receipt from FopCommand via
FoCmCCSDSFopProxy, and FUI is notified of the commands upgraded status via
FoGnCmdFuilF. FcCdCmdQueue is requested to begin verification of the command if thereisa
verification parameter. The command (FcCdCmd) isfound in the queue, and the parameter service
list is updated to reflect the new telemetry parameter required for verification of this command
through FOGnCmdTImProxy.

Astelemetry isreceived, FcCdCommandController is sent alist of updated telemetry parameters
via the TImParamerterServerProxy. This list is forwarded to FcCdCmdQueue. The list of
telemetry PIDsistraversed. For each PID, all outstanding commands (FcCdCmd objects) which
need that PID for verification are checked. The telemetry value supplied in this list is not within
the range required to verify the command, so the command remains unverified at thistime. This
sequence may be repeated severa times before verification takes place.

FcCdCommandController is eventually sent alist of updated telemetry parameters one of which
will verify the traced command via the TImParamerterServerProxy which is forwarded to
FcCdCmdQueue. The list of telemetry PIDs is traversed and for each PID, all outstanding
commands (FcCdCmd objects) which need that PID for verification are checked. The telemetry

3-86 305-CD-045-001

value supplied in this list however, is within the range required to verify the command, and the
command is thus telemetry verified.

FUI is notified of the telemetry verification status via FoGnCmdFuilF, an event message to that
effect islogged via FdEvEventL ogger, and the command is removed from FcCdCmdQueue.

After all of thetelemetry PIDs have been checked, the PID list isupdated to reflect only those PIDs
needed for the current (i.e., smaller) list of outstanding commands in FcCdCmdQueue which still
need to be telemetry verified. Thisrevised PID list isthen sent to TImParameterServerProxy.

3-87 305-CD-045-001

88-€

T00-G70-AD-S0E

FoCmCCSDSFopProxy

notifies that cmd i

TLM Parameter Server Proxy

<€&———send updateq

[<<-value verifies command—

remove command from
queue

|

1
process remainder
of update list

P —

Il parameter list

FcCdCmdController FcCdCmdQueue FeCdCmd FoGnCmdFuilf
receipt verified—— >> X . e
P notjfies of receipt verification >
tells to begin tim >>|
<€&—————adds to param service list
sends list of >
updated parameters
P P [———forwards list————>>|
goes through list,
param for command is
in list
| checkif param
verifies command 2]
param does not verify
ds list of I<<—value does not verify—
sends list of >
updated parameters .
[———forwards list—————>>|
goes through list,
param for command is
in list
check if param >
verifies command
param verifies
tim verified———=>>
log tim Verified —— >

Figure 3.2.4.20-1. Real-Time Command Verification: Successful Event Trace

FdEvEventLogger

3.2.4.21 Real-Time Command Verification: Failure Due to Timeout Scenario

3.2.4.21.1 Real-Time Command Verification: Failure Due to Timeout Abstract

The purpose of the "Real-Time Command Verification: Failure Due to Timeout" scenario is to
describe the process by which real-time commands which have not telemetry verified in the
database prescribed time limit are taken off the queue and proper notification is accomplished

Figure 3.2.4.21-1 is the event trace diagram which corresponds to this scenario.

3.2.4.21.2 Real-Time Command Verification: Failure Due to Timeout Summary Information
Interfaces:

TLM, FUI, DMS, FopCommand
Stimulus:

It is found that the command has not been verified in the allowed time period.
Desired Response:

The command is removed from the queue and appropriate notification is done..
Pre-Conditions:

None.
Post-Conditions:

The command is no longer on the queue.

3.2.4.21.3 Scenario Description

FcCdCommandController receives a command receipt from FopCommand via
FoCmCCSDSFopProxy, and FUI is notified of the command's status via FoGnCmdFuilF.
FcCdCmdQueue is requested to begin verification of the command if there is a verification
parameter. The command (FcCdCmd) is found in the queue, and the parameter service list is
updated to reflect the new telemetry parameter required for verification of this command through
FoGnCmdTImProxy.

Astelemetry isreceived, FcCdCommandController is sent alist of updated telemetry parameters
via the TImParamerterServerProxy. This list is forwarded to FcCdCmdQueue. The list of
telemetry PIDsistraversed. For each PID, all outstanding commands (FcCdCmd objects) which
need that PID for verification are checked. The telemetry value supplied in this list is not within
the range required to verify the command, so the command remains unverified at thistime. This
sequence is repeated several times but none of the supplied updates of the parameter verifies the
command. Meanwhile, at regular intervals, triggered by a timer, FcCdCmdController calls
FcCdCmdQueue::CheckTimes() which then polls each command on the queueto seeif it hastimed
out. Eventualy, after the traced command has been on the queue for the maximum time,
CheckTimes() istold by the traced command (FcCdRtCmd) that it has timed out. The command
itself logs this event and notifies Fui, and the queue removes the command, and updates the
parameter service list.

3-89 305-CD-045-001

06-€

T00-G70-AD-S0E

FoCmCCSDSFopProxy

Tlm Parameter Server Proxy

notifies that commany

FcCdCmd

d is receipt verified—— =

Controller

FcCdCmdQueue

<&————adds param to

sends list of
updated parameters >

sends list of >
updated parameters

<&——send updated pg

tells to begin tim——>>f

service list

forwards list——=>1

forwards list———>>

—invokes CheckTimes()—=>|

rameter list:

goes through list,
param for command is
in list

check if param
verifies command

—>

l<€&——value does not verify-

]

goes through list,
param for command is
in list

check if param
verifies command

I<&——value does not verify-

goes through list,
finds command

invokes Timeout() ——>>f

<<

FcCdCmd

passes along nrJ\ification

FdEvEventLogger

FoGnCmdFuilf

value does not verify

e 1

value does not verify
<<

——notify that TLM verify has|
——rIlog timeout event——>>{

returns TRUE:

—
remove command from queue

<

>

timed out for command—>=>

Figure 3.2.4.21-1. Real-Time Command Verification: Fail due to time out

3.2.4.22 Real-Time Load Verification: Success Scenario

3.2.4.22.1 Real-Time Load Verification: Success Abstract

The purpose of the "Real-Time Load Verification: Success' scenario isto describe the process by
which real time loads are telemetry verified.

Figure 3.2.4.22-1 is the event trace diagram which corresponds to this scenario.

3.2.4.22.2 Real-Time Load Verification: Success Summary Information
Interfaces:

FOS User Interface

Data Management Subsystem

Telemetry Subsystem

FopCommand
Stimulus:

A command receipt is received from FopCommand.
Desired Response:

User Interface is notified of telemetry verification of the load.
Pre-Conditions:

The command queue contains at least one command; the command corresponding to the
load recei pt mentioned above.

Post-Conditions:

The command corresponding to the load receipt has been removed from the command
queue.

3.2.4.22.3 Scenario Description

FcCdCommandController receives a command receipt that corresponds to the last packet in the
load, from FopCommand (via FoOCmCCSDSFopProxy). FUI is notified of the load's upgraded
(uplink verified) status viaFoGnCmdFuilF. FcCdCmdQueue is requested to begin verification of
the load. The command (FcCdCmd) corresponding to the load is found in the queue, and the
parameter service list is updated to reflect the new telemetry parameters (i.e., the CRC) required
for verification of the load through FOGnCmdTImProxy.

Astelemetry isreceived, FcCdCommandController is sent alist of updated telemetry parameters
via the TImParamerterServerProxy. This list is forwarded to FcCdCmdQueue. The list of
telemetry PIDsistraversed. For each PID, all outstanding commands (FcCdCmd objects) which
need that PID for verification are checked. The telemeter CRC value supplied in thislist does not
confirm the load verification the command, so the load remains unverified at thistime.

FcCdCommandController is then sent a second list of updated telemetry parameters via the
TImParamerterServerProxy which is forwarded to FcCdCmdQueue. The list of telemetry PIDs s
traversed and for each PID, all outstanding commands (FcCdCmd objects) which need that PID for
verification are checked. Thetelemeter CRC value supplied in thislist thistime matches the CRC
retained from the load header (as myCRCRWCString), and the load is thus telemetry verified.

3-91 305-CD-045-001

FUI is notified of the telemetry verification status via FoGnCmdFuilF, an event message to that
effect islogged via FdEVEventL ogger, and the load command is removed from FcCdCmdQueue.

After al of thetelemetry PIDs have been checked, the PID list isupdated to reflect only those PIDs
needed for the current (i.e., smaller) list of outstanding commands in FcCdCmdQueue which still
need to be telemetry verified. Thisrevised PID list isthen sent to TImParameter ServerProxy.

3-92 305-CD-045-001

€6-€

T00-G70-AD-S0E

FoCmCCSDSFopProxy

——notifies that load i

TLM Parameter Server Proxy

FcCdCmdController

5 receipt verified—— >
p
tells to begin tiM——>>f
<&—————adds param to service list
sends list of
updated parameters > .
forwards list >>

sends list of
updated parameters >

———forwards list————>>|

<&——send update(

FcCdCmdQueue

psses along notification

FcCdLoadCmd

FoGnCmdFuilf

>>

1

goes through list,

param for Load is
in list

| checkif param___ x|

verifies load

I<&—value does not verify—

]

goes through list,
param for Load is
in list

| checkif param___ x|

verifies load

<<—value verifies load—

remove load from
queue

I

1
process remainder
of update list

P

1 parameter list:

check param

tim verified———=>>

log tim

erified —m8 ——>>

Figure 3.2.4.22-1. Real-Time Load Verification: Successful Event Trace

FdEvEventLogger

3.2.4.23 Real-Time Load Verification: Failure Due to Timeout Scenario

3.2.4.23.1 Real-Time Load Verification: Failure Due to Timeout Abstract

The purpose of the "Real-Time Load Verification: Failure Due to Timeout" scenario isto describe
the process by which real-time load commands which have not telemetry verified in the database
prescribed time limit are taken off the queue and proper notification is accomplished

Figure 3.2.4.23-1 is the event trace diagram which corresponds to this scenario.

3.2.4.23.2 Real-Time Load Verification: Failure Due to Timeout Summary Information
Interfaces:

TLM, DMS, FUI
Stimulus:

It is found that the load has not been verified in the allowed time period.
Desired Response:

The load command is removed from the queue and notification is done.
Pre-Conditions:

None.
Post-Conditions:

The load command is no longer on the queue.

3.2.4.23.3 Scenario Description

FcCdCommandController receives a load command receipt from FopCommand via
FoCmCCSDSFopProxy, and FUI is notified of the load command's upgraded status via
FoGnCmdFuilF. FcCdCmdQueue is requested to begin verification of the load command. The
load command (FcCdLoadCmd) is found in the queue, and the parameter servicelist is updated to
reflect the new telemetry parameter required for verification of this command through
FoGnCmdTImProxy.

Astelemetry isreceived, FcCdCommandController is sent alist of updated telemetry parameters
via the TImParamerterServerProxy. This list is forwarded to FcCdCmdQueue. The list of
telemetry PIDsistraversed. For each PID, al outstanding commands, including loads, (FcCdCmd
objects) which need that PID for verification are checked. The telemetry value supplied in thislist
is not within the range required to verify the load command, so the load command remains
unverified at thistime. This sequence is repeated several times but none of the supplied updates
of the parameter verifies the load command.

Meanwhile, at regular intervals, triggered by a timer, FcCdCmdController calls
FcCdCmdQueue::CheckTimes() which then polls each command on the queueto seeif it hastimed
out. Eventually, after the traced load command has been on the queue for the maximum time,
CheckTimes() istold by the traced load command (FcCdL oadCmd) that it hastimed out. Theload
command itself logs this event and notifies Fui, and the queue removes the load command, and
updates the parameter service list.

3-94 305-CD-045-001

G6-€

T00-G70-AD-S0E

FoCmCCSDSFopProxy

——— notifies that load i

TLM Parameter Server Proxy

FcCdCmd

b receipt verified———>>

Controller

FcCdCmdQueue

€&————adds param

sends list of >
updated parameters

———tells to begin tIn——>>
to service list——————

sends list of
updated parameters >

<&——send updated

forwards list: >>

————forwards list————>>{

——invokes CheckTimes(}—>>

parameter list———————

passes alongj

goes through list,
param for Load is
in list

check if param___ x|

verifies load

I<&—value does not verify—

]

goes through list,
param for Load is
in list

check if param, >

verifies load

I<&—value does not verify—

goes through list,
finds Load

——invokes Timeout()—>>f

<<—eturns TRUE:

-
remove Load from queu

FcCdLoadCmd

FdEVEve

notification

ntLogger FoGnCmdFuilf

value does not verify

value does not verify

P —

————notify that tm verify has

log timeout event——=>>|

b

>

imed out for Load————>>

Figure 3.2.4.23-1. Real-Time Load Verification: Failure due to time out

3.2.4.24 Real-Time Dump Command Scenario

3.2.4.24.1 Real-Time Dump Command Abstract

The purpose of the "Real-Time Command Verification: Success' scenario is to describe the
process by which real time commands are telemetry verified.

Figure 3.2.4.24-1 is the event trace diagram which corresponds to this scenario.

3.2.4.24.2 Real-Time Dump Command Summary Information
Interfaces:

TLM, DMS
Stimulus:

A dump command is received by FcCdCmdController.
Desired Response:

TLM isnotified of the impending dump.
Pre-Conditions:

None.
Post-Conditions:

TLM has been warned.

3.2.4.24.3 Scenario Description
The dump notification scenario is identical to the realtime command validation success scenario,
except:

When the command database is accessed by FcCdCmdController, the dump command flag in the
databaseisset. After the command isvalidated, FcCdCmdController checksthisflag, and since it
isset, it sends anotification to TLM that a dump isimminent.

3-96 305-CD-045-001

w
o
q
0O
¥
G
o
o
=

FoGnCmdFuiProxy

FoCmCCSDSFopProxy

FoGnCmdFuilF
FeCdCmdControler FeCdCommandDatabase FecdCmdDet FeCdRICmd FoGnCmdTimProxy FAEVEventLogger
}— provides Directives —3>{
Check
jser
Authorzaiion
}— Request Cmd Def —3>1
Request DB info ——3>]
o8
l<€— Provides Cmd Def —|
Echq command & Notify ASTER
e
Check
submnemonic
checkiim
log prereq chedk override ————— 3
s for
returns prompt_for_c
f— send ALLOW resp. —35
—
Process
Prereq, resp.
check crical
pfompts for critcal command pefmission
retums prompt_for_permission statug ————————|
f— send ALLOW resp. —35{
o respanse
process
criical response
success
oty TLM df imminent dump
—
build cmd

Figure 3.2.4.24-1. Real Time Dump

3.2.4.25 Hex Command Validation: Success Scenario

3.2.4.25.1 Hex Command Validation: Success Abstract

The purpose of the "Hex Command Validation: Success' scenario is to describe the process by
which the Hex command is successfully validated.

Figure 3.2.4.25-1 is the event trace diagram which corresponds to this scenario.

3.2.4.25.2 Hex Command Validation: Success Summary Information
Interfaces:

FOS User Interface

FopCommand

Data Management Subsystem
Stimulus:

A hex formatted command is forwarded by FOS User Interface to the Command
Subsystem.

Desired Response:

FOS User Interface receives the status of successful command validation/generation.
Pre-Conditions:

None.
Post-Conditions:

The command has been forwarded to FopCommand for eventual uplinking.

3.2.4.25.3 Scenario Description

FoGnCmdFuil F providesto FcCdCmdController areal-time command, in hex format; i.e., already
in 1553-b format.

FcCdCmdController comparesthe ID and workstation of theissuer of the command against the ID
of the currently authorized operator and workstation, myUserld and myWksld, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

A FcCdHexCmd object is created, and its CheckCritical operation isinvoked. A critical promptis
issued to the authorized user to respond alow or cancel. As this is an asynchronous
communication, FcCdRtCmd returns control to the FcCdCmdController, which resumes polling
for all possible messages. FcCdCmdController then receives a FUI message indicating the user's
response. It passesthisresponseto FcCdRtCmd by invoking its ProcessCritical Rsp operation. The
user's response is to allow, the proper notifications are made via FdEvEventLogger and control
returns to FcCdCmdController.

FcCdCmdController invokes the SendCmd operation of FcCdHexCmd. The command is then
forwarded to FopCommand via FoGnCmdFopProxy. Upon receipt of acknowledgment from
FopCommand (via FoGGnCmdFoplF), FcCdCommandController notifies FUI (via
FjoGnCmdFuilF) of completion of its request, and adds the FcCdHexCmd to the queue of
commands waiting uplink verification.

3-98 305-CD-045-001

66-€

T00-G70-AD-S0E

FoGnCmdFuiProxy

FoGnCmdFuilF

FcCdCmd!

——sends cmd directive—>>]

Controller

X
user authorized

ompts for critical command p

——send ALLOW resp.—>>{

successful
creates >
invokes check >

critical function

ermission—— X

< returns prompt for
permission status

FcCdHexCmd FdEvEve

———oog event———>>

ntLogger FoGnCmdFopProxy

FoGnCmdFoplF

ck done

provides resp.——>>f
-
process critical
response
<<—!
critical check
; successful >
< return success,
status
send command——>>]
——provides cgmmand to——>>
log command———>>
[<<—teturn success status—
<< nd receipt ack
dd to queu

FcCdCmdQueue

Figure 3.2.4.25-1. Hex Command Validation: Success Event Trace

3.2.4.26 Hex Command Validation: Fail Due to Cancel Critical Scenario

3.2.4.26.1 Hex Command Validation: Fail Due to Cancel Critical Abstract

The purpose of the "Hex Command Validation: Fail Due to Cancel Critical" scenarioisto describe
the process by ahex command is not uplinked when the user indicates cancel to the critical prompt.

Figure 3.2.4.26-1 is the event trace diagram which corresponds to this scenario.

3.2.4.26.2 Hex Command Validation: Fail Due to Cancel Critical Summary Information
Interfaces:

Resource Manager Interface

Data Management Subsystem
Stimulus:

A hex formatted command is forwarded by FOS User Interface to the Command
Subsystem.

Desired Response:

The Resource Manager is notified of the completion.
Pre-Conditions:

None.
Post-Conditions:

The FormatCommand process is reconfigured.

3.2.4.26.3 Scenario Description

FoGnCmdFuil F providesto FcCdCmdController areal-time command, in hex format; i.e., already
in 1553-b format.

FcCdCmdController comparesthe ID and workstation of theissuer of the command against the ID
of the currently authorized operator and workstation, myUserld and myWksld, to verify that, in
fact, it is the operator with current command authorization who issued the command. The
comparison shows that the IDs match.

A FcCdHexCmd object is created, and its CheckCritical operation isinvoked. A critical promptis
issued to the authorized user to respond alow or cancel. As this is an asynchronous
communication, FcCdHexCmd returns control to the FcCdCmdController, which resumes polling
for all possible messages. FcCdCmdController then receives a FUI message indicating the user's
response. It passes this response to FcCdHexCmd by invoking its ProcessCritical Rsp operation.
The user'sresponseisto cancel. The FcCdHexCmd log message via FAEVEventLogger , sends an
ack to FUI and returns control to FcCdCmdController.

3-100 305-CD-045-001

TOT-€

T00-G0-AD-S0E

FoGnCmdFuiProxy

FoGnCmdFuilF

— sends cmd directive

— send CANCEL resp.

ack done

prompts for critical command permissig

FcCdCmdController

—=

—=

returns prompt for
< permission status

1
user authorized
successful

creates —— =

invokes check >

critical function

FcCdHexCmd

provides resp. —_——

logevent — ==

process critical
response

l<—

== return unsuccessful
status

log error message

Figure 3.2.4.26-1. Hex Command Validation: Failure Event Trace

FdEvEventLogger

—_——]

3.2.4.27 FcCdCmdController State Diagram

Onceinitialized, the controller object enters a superstate called " SuperWait" in the diagram. From
this state, it can process messages from other subsystems and from the Command Uplink process.
Messages received from RM S, TLM, and CMD:Uplink; ground telemetry queries from FUI, and
time-outs (rel. B) are processed and then the controller returns to SuperWait, returning to its
previous state. Commands, operator prompt responses, and load requests (rel. B) from FUI cause
achange of state within or upon return to SuperWait.

In the diagram, processing which does not affect the SuperWait substate is shown at the bottom of
the diagram. Processing of messages which do affect the substate are shown within, above, and to
the right of the SuperWait box. Processing of commands begins with "receive command" and
continues toward the right. As can be seen, during command processing while possible prompt
responses are being waited upon, the controller returns to await state and other messages can be
processed.

Some things were omitted from the diagram for the sake of simplicity. If aninvalid directiveis
received from FUI (e.g., if acommand isreceived while the controller isin "wait for critical prompt
response” state), an error is logged, the directive is ignored, and the state does not change. If
prerequisite checking isturned off, the "validate command" state will either transition to "wait for
critical prompt" response or to "build and send command", depending on whether the command is
critical. Activities within states are generally not listed; state names should be self-explanatory
within the context of the rest of the subsystem documentation.

The exit state is reached when a Shutdown directive is received from the RMS.

3-102 305-CD-045-001

€0T-€

T00-G0-AD-S0E

Y

check prereq
parameters
if any

override
[not critical]

passcritical]

send load
packet

startup valid

[realtime or load]

process
override prompt
response

_process
critical prompt
response

V

if Toad Aot T -
in[sequghce | invalid Super Wait \
(\ ’ override

validate
command/
load

PP TECEIVE it Teceive
inititializ: i [critical]

titialized no override response response
sent

accepted by Fop

[incomplete load] if yerifylenqueue

fail prerequisit
check

wait for wait for
prereq critical prompt
override response

[command or
completed load]

pass[not critical]

allow

build and send
gommand or send
1st load packet,
put on queue if
needs tim verify

process

wait for
partition

wait for

receive respor

partition
response

response

Fop Accept

done
[realtime or load]

receive . . time
receive receive to
done done check done

V V V
process process process check for
RMS message ?nh:éggévg —>@ TLM message Fo%%ggwargznd

Figure 3.2.4.27-1. FcCdCmdController state diagram

3.2.4.28 FcCdRtCmd State Diagram Description

During its creation by the FcCdCmdController, the FcCdRtCmd attributes are initialized. The
FcCdRtCmd object then enters the waiting mode. Upon receiving the validate command from the
FcCdCmdController, it will perform submnemonics validation. If any submnemonic is not
validated, it will return aFail statusto the FcCdCmdController. If all submnemonicsare validated,
it then enters the CheckPrerequisite state. There are two scenariosin this state. First, if there is
no prerequisite check required or the check issuccessful, it then moveson to the CheckCritical
state. In the second scenario, the prerequisite check is unsuccessful; the FCCARtCmd then prompts
for override and enters the Wait-for-Override-Response state. Upon receiving the response
(asynchronously), it enters the CheckCritical stete if the response is to ALLOW; otherwise, it
returns fail status and exits.

Inside the CheckCritical state, if the command is not critical, the FcCdRtCmd object returns
validation success status and then enters the Wait-for-Build-Command state. |f the command is
critical, it promptsfor critical permission and entersthe Wait-for-Permission state. Upon receiving
the response (asynchronoudly), if the response is to ALLOW, it enters the Wait-for-Build-
Command state; otherwise, it returnsfail status and exits.

In the Wait-for-Build-Command state, upon receiving the Build command from the
FcCdCmdController, the FcCdRtCmd object constructs the binary command in the 1553-B format
and then sends this binary command to the uplink process. It returns the status and exits.

3.2.4.29 FcCdLoadCmd State Diagram Description

After being instantiated by the Command Controller, the FcCdL oadCmd object enters the wait for
validation state. Upon receiving validation request from the controller, the FcCdL oadCmd object
enters the Validation state, where it performs the following:

It instantiates an FcCdL oadData object;

It invokes the Init() function of the FcCdL oadData object to read in the header file and the
load data;

It invokesthe Validatel oadParameters() of the FcCdL oadDatato validate the spacecraftld,
the destination and time window for the current load;

If the validation is unsuccessful, the FcCdLoadCmd returns Unsuccessful status then exits.
Otherwise, it checks for load criticality. If the load is critical, it prompts for critical response,
returns control to the command controller and enters the Wait For Critical Response state. If the
load is not critical, it returns successful validation status and enters the Wait to be Sent state.

Inside the Wait for Critical Response state, upon receiving the ALLOW response, it returns
Success status to the controller and enters the Wait to be Sent state. If the response is CANCEL,
it returns Unsucessful status and exits.

In the Wait to be Sent state, upon receiving the send command from the controller, it sends out one
packet from theload, returns statusto the controller. 1f the packet isthelast oneintheload, it exits;
otherwise, it goes back to the Wait to be Sent state.

3-104 305-CD-045-001

initialize

Initialize

wait for
validate cmd

Received validate cmd

validating

submnemonic submnemonics not validated/.

return fail status

submnemonics validated

check
Prerequisite

fail/prompt for override, return status

no prerequisite specified
or
pass prerequisite check

wait for
override
response

Received CANCEL resp./
return fail status

Received ALLOW response

check
critical

critical/prompt, return status

wait
for
permission

Received CANCEL/
return fail status

Not critical/return
Succesg status

Received ALLOW resp/return SUCCESS status

wait for
build
command

Received build command

Build & Send
Binary
Command

return status

Figure 3.2.4.28-1. FcCdRtCmd state diagram

3-105 305-CD-045-001

Instantiated

Y

Init

Received validate cmd

Load file does not exist or
Fail validation/
return Fail status

Validate
Load File

Pass validation

Check

for
Criticality

Critical Load/Prompt, return status

Wait for
Critical
Permission

Non-critical load/
return Success status

Received ALLOW resp./
return Success status

Wait for
Send
Command

Received CANCEL resp./
return fail status

Received Send Cmd

Has more packet to send/
return status

Send Packet

Sent last packet/
return status

Figure 3.2.4.29-1. FcCdLoadCmd state diagram

3-106 305-CD-045-001

3.2.5 FormatCommand Data Dictionary

FcCdCmdController
cl ass FcCdCndControll er

This class contains all the attributes that characterize the state of the Format task. It also contains the functions which perform
the basic housekeeping of the process and coordinate the activities of the other objects.

Public Functions

EcTBool ean Init()
Run

FcCdFopFormatProxy
cl ass FcCdFopFor mat Pr oxy

Private Data

FoGnFopAccept Msg nyAccept Msg
sent to FormatCommand each time a command is accepted

FoGnFopRecei pt Msg nyRecei pt Msg
sent to FormatCommand each time a command is receipt confirmed by s/c or times out

FcCdFormatRcvIf

cl ass FcCdFor mat Revl f

receives all asynchronous messages that comein across theipc. Because of continuing developments regarding theipc, this
interfaceis still somewhat undetermined.

FcTCdStatus
enum FcTCdSt at us

Enumerators

FcECdPr onpti ngFor Cri t Permit
FcECdPr onpt i ngFor PrereqOverri de
FcECdSuccessful Val i dati on
FcECAW ongOr der

FcGnFopAcceptMsg
cl ass FcGhFopAccept Msg

This message class carries a message which indicates if FopCommand process is ready for the next command.

Base Classes
public FcGnFopMsg

Public Functions

EcTVoi d Execut e()

This operation overrides the virtual function FoGnGenericM sg::Execute(). It calls
FcCdCmdController::ProcessFopAcceptM sg member function.

3-107 305-CD-045-001

FcGnFopCmdMsg
cl ass FcGhFopCndMsg

This message classis sent to FopCommand process. It contains areal time command in 1553B format.
Base Classes

publ i ¢ FcGnFopDat aMsg

Public Functions

EcTVoi d Execut e()
This operation knows how to invoke ProcessNewCmd function of FopCommand process.

Private Data

EcTBool ean myBcFl ag
This attribute identifies if the current command is a CCSDS control command.

FcGnFopDataMsg

cl ass FcGnhFopDat aMsg
This message classis the base class for FcGnhFopCmdM sg and FcGnFopPacketM sg.

Base Classes

public FcGnFopMsg

Private Data

EcTUChar* myDat a
This attribute identifies the binary command data.

EcTl nt nyDat aLength
This attribute identifies the length of the command data.
FcGnFopMsg
cl ass FcGhFopMsg

abstract class that represents all messages passed from FormatCommand to FopCommand and vice-versa

Base Classes
public FoGhGeneri cMsg

Private Data

EcTl nt nySegNum
used as method of making each command unique for reference

FcGnFopPacketMsg
cl ass FcGnFopPacket Msg

This message classis sent to FopCommand process. It carries a CCSDS packet.

3-108 305-CD-045-001

Base Classes
publ i c FcGnhFopDat aMsg

Public Functions
EcTVoi d Execut e()
This operation knows how to invoke ProcessNewPacket function of FopCommand process.
Private Data

FcTCdLoadSt age nylLoadSt age
This attribute identifies the memory load stage. i.e. first or last partitin etc.

FcGnFopReceiptMsg
cl ass FcGhFopRecei pt Msg

This message class carries a message which indicates if acommand is CLCW verified.
Base Classes
public FcGnFopMsg

Public Functions

EcTVoi d Execut e()

This operation overrides the virtual function FoGnGenericM sg::Execute(). It calls
FcCdCmdController::ProcessFopRecei ptM sg member function.

Private Data

EcTBool ean nySuccess
This attribute identifies if the command is cuccessfully CLCW verified.

FoGnCmdFuilf
cl ass FoGhCndFui | f

Public Functions
EcTVoid Error(EcTlnt)
This operation sends FUI a FoUi Status message that an error occured concerning this command
EcTVoi d GoAhead(EcTl nt)
This operation sends FUI a FoUiStatus message that it can send another command
EcTVoid Init()
Critical This operation sends FUI a FoUi Status message that this command needs a critical prompt
EcTVoid PartitionOrder (EcTInt segNum
ReceiptV erifyPass This operation sends FUI a FoUi Status message that this command was received by the S/IC

EcTVoi d PrereqgFail (EcTl nt)

This operation sends FUI a FoUi Status message that this command failed prereq check and FormatCommand is awaiting
an override or cancel

EcTVoi d PrereqPass(EcTl nt)
This operation sends FUI a FoUi Status message that this command passed prereq check

EcTVoi d Put Response(RACString string)
records a message to be displayed by Fui accompanying the next status sent

3-109 305-CD-045-001

EcTVoi d Recei pt VerifyFail (EcTI nt)
TImVerifyPass This operation sends FUI a FoUi Status message that this command has been executed on board the S/IC

EcTVoid Tl mVerifyFail (EcTlnt)
This operation sends FUI a FoUiStatus message that this command failed to execute

EcTVoi d TI nmverifyNone(EcTI nt)
This operation sends FUI a FoUi Status message that this command has no tlm verify parameters
FoGnFormatRmslf
cl ass FoGnFor mat Rsl f

Public Functions

EcTBool ean SendRecei pt ()
sends a FOGnRmsRecei ptMsg to RM S: String Manager task

Private Data
FoGhRnsRecei pt Msg nyRecei pt Msg

FoGnFormatTImlIf
cl ass FoGhFormat Tl m f
Public Functions
EcTVoid Init(ipc info)
PrepareForDump sends TLM subsystem a message notifying it of an imminent dump
FoGnFuiAbortLoadMsg
cl ass FoGnFui Abort LoadMsg

This message class carries a abort |oad message to the FormatCommand process.
Base Classes

publ i c FoGnFui Msg

Public Functions

EcTVoi d Execut e()

This operation overrides the virtual FoGnGenericM sg::Execute(), calling FcCdCmdController::ProcessL oadAbort
function.

FoGnFuiCmdProxy
cl ass FoGnhFui CndPr oxy

FoGnFuiCriticalRspMsg
cl ass FoGnFui Critical RspMsg

this message class carries aresponse to a critical prompt to the FormatCommand process

3-110 305-CD-045-001

Base Classes

public FoGnFui Msg

Public Functions
EcTVoi d Execut e()
this operation overrides the virtual FoGnGenericM sg::Execute(), calling FcCdCmdController::ProcessCritical Rsp().
Private Data

FcTCdCriti cal Rsp nmyResponse
This attribute identifies the response.

FoGnFuiLoadMsg
cl ass FoGnhFui LoadMsg

This message class carries a process L oad message to FormatCommand process.

Base Classes

public FoGnFui Msg

Public Functions

EcTVoi d Execut e()

This operation overrides the virtual FoGnGenericM sg::Execute(), calling FcCdCmdController:: ProcessL oadRequest
function.

Private Data

RWCSt ri ng nyNane
This attribute identifies the load name.

FcTCdLoadType nyType
This attribute identifies the load type.

FoGnFuiMsg

cl ass FoGnFui Msg
this abstract class represents all messages passed from FoGnFuiCmdProxy to FcCdRcevIf

Base Classes
public FoGnhGenericMsg

Private Data

EcTl nt nySegNum
used to give each issued command a unique number

EcTlnt nmyUserld
givesthe used id of the user sending the message

EcTl nt nmyVWksld
gives the workstation id of the console the command is sent from

3-111 305-CD-045-001

FoGnFuiPartRspMsg
cl ass FoGnFui Part RspMsg

This message class carries aresponse to a prompt for a out of sequence load.

Base Classes
publ i ¢ FoGnFui Msg

Public Functions

EcTVoi d Execut e()

This operation overrides the virtual function FoGnGenericM sg::Execute(). It calls
FcCdCmdController::ProcessPartitionRsp member function.

Private Data

FcTCdRsp nyResponse
This attribute identifies the response.

FoGnFuiPrereqRspMsg
cl ass FoGnFui PreregRspMsg

This message class carries aresponse to a prerequisite check prompt to the FormatCommand process.
Base Classes

public FoGnFui Msg

Public Functions
EcTVoi d Execut e()
This operation overrides the virtual FoOGnGenericM sg::Execute(), calling FcCdCmdController::ProcessPrereqgRsp().
Private Data

FcTCdRsp nyResponse
This attribute identifies the response.

FoGnFuiStoredCmdMsg
cl ass FoGnhFui St or edCnmdMsg

This message class carries a stored command to FormatCommand process.

Base Classes
public FoGnFui Msg

Public Functions

EcTVoi d Execut e()

This operation overrides the virtual function FoGnGeneric::Execute(). It calls
FcCdCmdController::ProcessStoredCommand member function.

Private Data

FcTCdSour ce mySource

This attribute identifies the stored command source.
RWCString nyString

This attribute identifies the stored command string.

3-112 305-CD-045-001

FoGnGenericMsg
cl ass FoGhCGeneri cMsg

abstract class represents all messages sent to FormatCommand or sent by FormatCommand to FopCommand. These messages
know how to execute themselves.

Base Classes
public RWCol | ect abl e

Public Functions

virtual EcTVoid Execute(void)

isoverridden in each concrete class so that each message knows what operation in FcCdCmdController to cal in order to
process itself

FoGnRmsFormatinitMsg
cl ass FoGhRnsFor mat | nit Msg

message is sent from RM S to FormatCommand during initialization to set configuration attributes.

Public Functions
EcTVoi d Execut e(voi d)

Private Data

EcTlInt nyDbld
initializes value

FoTGhAddr ess nyFopAddr
initiaizes value

FoTGhAddr ess nyFui Addr
initializes value

FcTCdOper at i onMbde myQOper at i onMbde
initializes value

FoTGnAddr ess nyPar anSer ver Addr
initializes value

FcTCdPri mar yMode nyPri mar yMode
initializes value

EcTlint nyScld
initializes value

FOoTGhAddr ess ny Tl mAddr
initiaizes value

FoGnRmsFormatPrimaryModeMsg
cl ass FoGhRnsFor nat Pri mar yModeMsg

This message class carries a"set mode" request to FormatCommand process.

3-113 305-CD-045-001

Base Classes
public FoGhRnsMsg

Public Functions

EcTVoi d Execut e()

This operation overrides the virtual function FoGnGenericM sg::Execute(). It calls FecCdCmdController::SetMode
member function.

FcTCdPri mar yMode Get Pri maryMode()
This operation returns the mode of the current string to the caller.

EcTVoi d Set Pri mar yMode(FcTCdPr i mar yMode)
This operation sets the mode of the current string.

Private Data
FcTCdPri mar yMode nyPri mar yMbde

This attribute identifies the mode of current string.
FoGnRmsFormatProxy
cl ass FoGhRnsFor mat Pr oxy

FoGnRmsFormatShutdownMsg
cl ass FoGhRnsFor mat Shut downMsg

This message class carries a shutdown request to FormatCommand process.

Base Classes
public FoGhRnsMsg

Public Functions
EcTVoi d Execute()

This operation overrides the virtual FoOGnGenericM sg::Execute(), calling FcCdCmdController::Shutdown function.
FoGnRmsMsg

cl ass FOGhRneMsgQ
abstract class represents all messages sent from FoGhRmsFormatProxy to FcCdRcevl f

Base Classes
public FoGnhGenericMsg
FoGnRmsSaveFormatSnapshotMsg

cl ass FoGhRrsSaveFor mat Snapshot Msg
This message class carries RM S request " Save snap shot" to FormatCommand process.

3-114 305-CD-045-001

Base Classes

public FoGhRnsMsg

Public Functions

EcTVoi d Execut e()

This operation overrides the virtual FoGnGenericM sg::Execute() function. It calls FecCdCmdController:: SaveSnapshot
function.

EcTVoi d FoGhRnsSaveSnapshot Msg()
Thisisthe default constructor.
Private Data

RWCSt ri ng nyFi | eNane
This attribute identifies my snap shot file name.

FoGnRmsSetCmdAuthUserMsg
cl ass FoGhRnmsSet CndAut hUser Msg

This message class carries a " Set command authorized user" request to FormatCommand process.

Base Classes
public FoGhRnmsMsg

Public Functions

EcTVoi d Execut e()

This operation overrides the virtual function FoGnGenericM sg::Execute(). It calls
FcCdCmdController::UpdateCmdA uthUser function.

Private Data

EcTlnt nyUserld
This attribute identifies the user id.

EcTlnt nmyVWksld
This attributes identifies the work station id.

FoGnRmsSetPrereqCheckMsg

cl ass FoGhRnsSet Prer eqCheckMsg
This message class carries RM S request "set prerequisite check state” to FormatCommand process.

Base Classes
public FoGhRmsMsg

Public Functions

EcTVoi d Execut e()

This operation overrides the virtual FoGnGenericM sg::Execute(), calling FcCdCmdController:: SetPrereqCheckState
function.

Private Data

FcTCdPr er eqCheckSt at e nmyPrer eqCheckSt at e
This attribute identifies the new prerequisite check state.

3-115 305-CD-045-001

FoGnTImDumpMsg
cl ass FoGhTl nDunpMsg

Base Classes
public FoGhTl mvkg

Private Data

EcTBool ean myAbsol ut eFl ag
indicatesif the dump is an absolute dump

EcTl nt nyAddress
indicated the address of the beginning of the dump

EcTlnt nmySegO f set
indicates the segment offset of the dump

EcTInt nyTabl el d
indicates the table ID of the table being dumped

EcTI nt nmyWbrdLengt h
indicates the length of the dump in words

FoGnTImMsg

cl ass FoGhTl mvsg
abstract class represents all the messages sent from FoGnFormat TImlf to FoGnTImDumpProxy

Base Classes
public RWCol | ect abl e

FoUiStatus

cl ass FoUi St at us
message passed from FormatCommand to FUI giving status of a directive

Private Data

EcTl nt nySegNum
provides a unique identifier for each directive

FoTUi St atus nySt at us
provides the status of the directive

RWCSt ri ng nyText
provides text which may be displayed to the user to accompany the status.
FcCdBaseCmd
cl ass FcCdBaseCnd

Thisisthe base class for all command type: real-time, hex/binary, stored or load.

Public Construction

FcCdBaseCnd(voi d)
This member function is the default constructor.

3-116 305-CD-045-001

~FcCdBaseCnd(voi d)
This member function is the destructor.

Public Functions
vi rtual EcTBool ean CheckCritical (void)
This member function isavirtual function.
virtual EcTInt ProcessCritical Rsp(FoGnFui Critical RspMsg* nsQ)
This member function isavirtual function.
vi rtual EcTBool ean Val i dat e(void)
This member function isavirtua function.

virtual EcTBool ean VerifyTI m(Struct_Pid* Tl nvsg)
This member function is avirtual function.

Private Data
stati c FoGhCmdCnsPr oxy* myCnsPr oxy
This member variable points to Cms proxy.
static FoDsFile* nyDsFile
This member variable points to the FoDsFile proxy
static FdEvEvent Logger* nyEvent Logger
This member variable points to FAEVEventL ogger proxy.
stati c FoGhCndFopProxy* myFopPr oxy
This member variable points to the FopCommand proxy.
EcTint nyFui Cld
myFuiCid
This member variable contains the Fui Cmd Id.
enum nyFui CndType
static FoGhCrdFui Proxy* myFui Proxy
This member variable pointsto Fui Proxy.
static FoGhCndTIl nProxy* nyTl nProxy
This member variable pointsto TIm proxy.
Private Types
enum

This member variable contains the command type.

Enumerators

CAC
scri pt
st ored

FcCdCmd
cl ass FcCdCnd

A base class representing either a real-time command or a stored command.

3-117 305-CD-045-001

Public Construction
FcCdCnd(command_struct* cnd_str)
object constructor.
~FcCdCnd(voi d)
object destructor.

Public Functions
EcTVoi d Set Ti ne()
RecordTime
This member function set myEnqueueTime to current time.
virtual EcTBool ean Ti neCut ()
This member function isavirtua function
EcTBool ean VerifyTl n(Struct _Pi d* Tl mvkQ)
This member function is used for telemetry verification

Private Data

EcTI nt nmyCndLen
the length of the command, in words.

enum nmyCndType

EcTBool ean nyCriti cal

Thisis aBoolean that indicates whether or not the operator is to be prompted prior to processing the command. If
prompting is required, the operator must respond positively before the command is processed; a negative response will
prevent uplink of the command.

structure nyDescri ptor
This attribute is information about the command, such as command type and data length.

structure myDestination

This attribute is information pertaining to the routing of a command once on board the spacecraft, i.e., the instrument of
the subsystem to which the command is directed.

set nyExpect edTl nVal ue

This attribute is a set of expected values for the telemetry parametersin myTImVerifyPid set to determine command
execution verification. There is one pair of high/low values for each (1 to 4) of myTImVerifyPid.

RWCSt ri ng nyMenoni c
Thisisthe command id corresponding to the mnemonic command, as referenced from within the FUI Subsystem.
EcTl nt nyNunti xedDat aRec
This attribute identifies number of fixed data records in the database file.
EcTl nt nmyNunPrereq
This attributes identifies number of prerequisite records in the database file.
EcTl nt nyNunVar Dat aRec
This attribute identifies the number of variable data recordsin the database file.
enurer at ed nmySubSystem
This attribute idnetifies the name of subsystem to which the command is directed.

EcTlInt nyTl nVerifyPid
Thisis telemetry parameter used to verify the command using telemetry.

3-118 305-CD-045-001

EcTReal myVerifyWiitlnterval
Thisisthe amount of time, in miliseconds, to wait before declaring a command as having failed verification.

array of

Thisisarecord containing information for prerequisite checking: telemetry PID, prerequisite type (raw or converted), and
the upper / lower limit values to define the range of accepted values for the prerequisite check.

array of
This attribute identifies a set of command fixed datarecord (if existed).

Private Types

enum
command type (e.g. BDU Relay Drive/Logic/Serial/No-op)

Enumerators

Bdu
CCSDSBc
CtiuLoad

Dunp
Logic
NOOoP
Rel ay
SCCLoad
Seri al

FcCdCmdDef
cl ass FcCdCndDef

Thisclass contains all information related to a command.

Public Construction
FcCdCndDef (command_struct* cnd_str)
This member function is the default constructor.

~FcCdCndDef ()
This member function is the destructor.

Public Functions

EcTVoi d Get CrRecord(command_struct* cnd_str)
GetCmdRecord
This member function returns al attributes of this object.

EcTl nt hash()
This member function returns hash number for this object. The hash number is used to insert the object into RWSet.

RVWBool ean i sEqual (const RWCol | ect abl e* cnd)

This member function defines the meaning of equivalence for two objects of this class.
EcTVoi d restoreCut s(RWi stream& strm

This member function restores an object from a"flat" definition.

EcTVoi d saveCut s(RWi strean& strmn
This member function saves an object to a stream so that it can be restored late by restoreGuts function.

3-119 305-CD-045-001

Private Data

EcTl nt nmyCndLen
This member variable contains the length of the command in words.

enuner at ed nyCndType
This member variable contains the command type (Relay,L ogic,Serial,NOOP, CtiuLoad, SCCL oad, CCSDSBc, Dump)

EcTBool ean nyCriti cal

This member variableis aBoolean flag that indicates whether or not the operator isto be prompted prior to processing the
command. If prompting isrequired, the operator must respond positively before the command is processed; a negative
response will prevent uplink of the command.

set nyExpect edTl nVal ue

This attribute identifies a set of expected values for the telemetry parametersin myTImVerifyPid set to determine
command execution verification. Thereisone pair of high/low values for each (1 to 4) of myTImVerifyPid.

RWCSt ri ng myMhenoni ¢
This attribute identifies the number of fixed data records in the database file.
EcTl nt nyNunPrereq
This attribute identifies the number of prerequisite recordsin the databasefile.
EcTl nt nyNunVar Dat aRec
This attribute identifies the number of variable data records in the database file.
enurner at ed nmySubSystem
This attribute identifies the name of subsystem to which the command is directed.
set nyTlI nVerifyPid
This attribute is a set (1 to 4) of telemetry parameters used to verify the command using telemetry.

EcTReal nyVerifyWitlnterval

This attribute identifies the amount of time, in miliseconds, to wait before declaring a command as having failed
verification.

array of

array of

This attribute arecord containing information for prerequisite checking: telemetry PID, prerequisite type (raw or
converted), and the upper / lower limit values to define the range of accepted values for the prerequisite check.

array of
This attribute identifies a set of command fixed datarecord (if existed).

FcCdCommandDatabase

cl ass FcCdCommandDat abase

This class provides database information needed for all aspects of command processing, such as validation, building and
verifcation. Thisclassis derived from Rogue Wave RWSet class.

Public Construction

FcCdCommandDat abase()
This member function is the default constructor.

~FcCdCommandDat abase()
This member function is the destructor.

3-120 305-CD-045-001

Public Functions

EcTl nt Get ChdDefi nition(command_struct* cnd_str)

This member function gets the information necessary to build acommand, returns all information in the database related
to the given command mnemonic.

EcTBool ean | nit(FoDsFil e, Databaseld)
This member function loads information from the database into the hash table.

EcTVoi d restoreQuts(RWi stream& strm
saveGuts

This member function isaRogue Wave function; it stores an object into afile so that the object can belater restored using
restoreGuts.

EcTVoi d restoreQuts(RWi stream& strm
This member function is a Rogue Wave function; it restores an object from a "flat" definition.

FcCdHexCmd
cl ass FcCdHexCnd

Thisclassis used for hex/binary command in 1553-b format.

Public Construction

FcCdHexCd(voi d)
This member function is the default constructor.

~FcCdHexCnd(voi d)
This member function is the destructor.
Public Functions

EcTBool ean ProcessCriti cal Rsp(FoGnFui Critical RspMsg* Fui RspMsQ)
This member function handles the response to critical prompt

EcTBool ean SendCnd(voi d)
This member function sends the hex cmd to FopCommand
Private Data
RWCSt ri ng* nyBi naryCnd
This member variable contains the hex command.

FcCdLoadCmd
cl ass FcCdLoadCnd

Thisclassis used for all load command.

Base Classes
public FcCdRt Cnd

Public Construction

FcCdLoadCnd(RACSt ri ng* spacecraftld, RWCString* Loadl d)
This member function is the constructor.

~FcCdLoadCnd(voi d)
This member function is the destructor.

3-121 305-CD-045-001

Public Functions
EcTBool ean ProcessCritical Rsp(FoGnFui Critical RspMsg* Fui MsQ)
This member function is used to process critical response.
EcTBool ean ProcessPartiti onRsp(FoGnFui Part RspMsg* Fui MsQ)
This member function is used to process partition response.
EcTl nt SendLoad(voi d)
This member function is used to send aload to FopCommand process, one packet at atime.
FcTCdSt at us Val i dat e(FoUi | nstruction* Fui Msg)
This member function is used to validate aload; such item such as spacecraftld and time window will be validated.

EcTBool ean VerifyTl m(Struct_Pi d* Tl mveg)
This member function is used for telemetry verification of aload.

Private Data
RWCSt ri ng* nmyCRC
This member variable contains the CRC of the load.

FcCdLoadDat a* mnyLoadDat a
This member variable points to the load data (e.g. packets).

RWCSt ri ng* myLoadl d
This member variable contains the Load Id.

RWCSt ri ng* nmySpacecraftld
This member variable contains the spacecraft 1D.

FcCdLoadData

cl ass FcCdLoadDat a
class FcCdL oadData; This class contains the file header and data for aload.

Public Construction
FcCdLoadDat a(nyLoadl d, nyDsFil e, nyEventLogger, myFopProxy, nyFui Proxy)
This member function is the constructor.

~FcCdLoadDat a(voi d)
This member function is the destructor.

Public Functions

EcTVoi d Get LoadPar amet er s(RACStri ng* CRC, EcTBool ean* Critical, EcTint*
TInPid, EcTInt* Waitlnterval)

This member function returns important attributes concerning the load: CRC, critical flag, TImPid and
VerifyWaitinterval.

EcTBool ean I nit(void)
This member function is used to read load data and header.

EcTl nt SendPacket (voi d)
This member function sends one packet out to FopCommand process.

EcTBool ean Val i dat eLoadPar anmet er s(RACSt ri ng* Spacecraftld)
This member function validates parameters of aload (spacecraftld and time window)

3-122 305-CD-045-001

Private Data
RWCSt ri ng* myCRC
This member variable contains the CRC of aload.
EcTBool ean nyCriti cal
This member variable indicates the criticality of the load.
EcTl nt nyCurrent Packet
This member variable contains the number of the packets that have been sent out.
RWCSt ri ng* myDat a
This member variable contains the load packets.
RWCSt ri ng* nyDesti nati on
This member variable contains the destination for the load.
FoDsFi |l e* nyDsFil e
This member variable points to the FoDsFile proxy.
FdEvEvent Logger * nyEvent Logger
This member variable points to FAdEvVEventLogger proxy.
FoGhCndFopPr oxy* myFopPr oxy
This member variable points to the FopCommand proxy.
EcTint nyFuiCGd
This member variable contains the Fui command Id.
enum nyFui CndType
FoGnCndFui Proxy* nyFui Proxy
This member variable points to the Fui Proxy.
EcTl nt myLoadDat al ndex
This member variable contains the "mark” for the start of the next packet in the load.
RWCSt ri ng* nylLoadl d
This member variable contains the Load 1d.
RWCSt ri ng* mySpacecraftld
This member variable contains the spacecraft id.
EcTInt nyTlInPid
This member variable contains the load TIm Pid.
EcTl nt nyTot al Packet
This member variable contains the total number of packets in the partition.
EcTInt nmyVai tlnterval
This member varable contains the relative time window for load tim verified.
ti me* nyW ndow
This member variable contains the time window for the load to be uplinked
Private Types

enum
This member variable contains the Fui Command Type.

3-123 305-CD-045-001

Enumerators

CAC
scri pt
st ored

FcCdRtCmd

cl ass FcCdRt Cnd
(type of FcCdCmd) A derived class representing a real-time command that has been issued.

Base Classes
public FcCdCnd

Public Construction

FcCdRt Cd(command_struct* cnd_str)
Thisisthe object constructor.

~FcCdRt Cnd()
Thisisthe object destructor.

Public Functions
EcTBool ean Bui |l d(FopProxy, FdEvEvent Logger, Fui Proxy)
This function formats the command into spacecraft command format using the BinaryCmd.
EcTBool eam CheckCri ti cal (Fui Proxy)
This member function checks myCritical value and, if true, prompts the user for an allow/cancel response.

EcTBool ean CheckPrereq(Tl nProxy, FdEvEvent Logger)

This member function checks the Prerequisite telemetry point(s), if any, unless myPrerequisiteStatus is disabled.
CheckTImValue is used to compare the actual telemetry values against their prerequisite values. If the return status
indicates failure, the user is prompted for an override/ cancel response.

EcTlint ProcessCritical Rsp(FdEvEvent Logger, Fui Proxy, Fui MsQ)

This member function processes the response from user to earlier prompt for critical command permission.
EcTInt ProcessPrereqRsp(FdEvEvent Logger, Fui Proxy, Fui Msg)

This member function processes the response from user to earlier prompt for prerequisite override.
EcTBool ean SendCnd(FopPr oxy)

This member function forwards the commands and directives to FcCmCCSDSFop. The command isin 1553-B (AM-1
real-time) format.

EcTl nt Validate(PrereqFl ag, Fui Proxy, TInProxy, FdEvEventLogger,
Fui CdSt at us)

performsthefollowing functions: checks submnemonicsfor validity checks prerequisite state(s) by invoking CheckPrereq
and promptsfor Prerequisite overrideif fail prerequisite check invokes critical prompt for critical commands by invoking
CheckCritical.

Private Data

structure nyBi naryCmd
This attribute is the digital representation of the command.

structure myCrdDirective
Thisisastructure contains the parsed command directive.

3-124 305-CD-045-001

EcTBool ean nyPrerequi siteStatus
This attribute reflects the status of prerequisite checking.

FcCdStoredCmd
cl ass FcCdSt or edCnd

Thisclassis used for stored commands.

Base Classes
public FcCdCnd

Public Construction

FcCdSt or edCnd(voi d)
This member function is the default constructor.

~FcCdSt or edCnd(voi d)
This member function is the destructor.
Public Functions
EcTBool ean Ti neQut (voi d)
This member function returns the status of whether or not the current time is outside or inside the waiting window.
Private Data

static time nmyDownLi nkDel ay
This member variable contains the time delay for downlink.

3-125 305-CD-045-001

3.3 FopCommand Description

The Command Fop process is responsible for taking commands built by the FormatCommand
process, wrapping them in the appropriate header and footer information, and sending them to the
TransmitCommand process to be sent to the satellite via EDOS. The Fop process must also accept
a small number of directives from RMS, as well as process Command Link Control Words or
CLCWs received from the satellite through EDOS which keepsiit up to date on which commands
have been received onboard.

3.3.1 FopCommand Context Description

The FopCommand process receives formatted commands and memory loads from the
FormatCommand process, puts the appropriate wrappers on them according to CCSDS standard
and builds CLTUs. FopCommand process then sends the formatted data on to the
TransmitCommand processas CLTUs. Thereceipt status of auplinked command will be reviewed
by adown linked CLCW forwarded to FopCommand by EDOS. When the receipt of one of these
is confirmed by the spacecraft, FopCommand sends a command receipt to the FormatCommand
process. The Resource Management Subsystem (RMS) sends config info, reconfig requests and
snapshot request to FopCommand, and receives status messages from it. The config info includes
the spacecraft ID, the database ID, the state of the current string (i.e. backup or primary), the mode
of current string (i.e. real-time or simulation), the address of parameter server, the address of
FormatCommand process and the address of TransmitCommand process. FopCommand process
also sends ground telemetry updates to Parameter Server when ever aground telemetry is changed
either by a RMS directive or a CLCW. The ground telemetry parameter set may include the
following parameters: the current state of the Fop protocol, the wait flag of the current CLCW, the
Lockout flag of the current CLCW, the retransmit flag of the current CLCW, the current frame
sequence number (V(S)), the next expected acknowledgment frame sequence number (NN(R)), the
current timer initial value (T1_Initial), the transmission limit, the current transmission count and
the Fop Sliding Window width etc. The FOS Data Management Subsystem (DMS) is used to save
and retrieve afile containing config info, and to log events.

3-126 305-CD-045-001

LCT-€

T00-G0-AD-S0E

TransmitCommand
process

EDOS

FormatCommand

process

Figure 3.3.1-1.

CLCWs

CLCWs

Formatted

This Syistem

FopCommand

Y

FOS

Data
Management
Subsystem

FOS
Resource
Management
Subsystem
Config Info, tat

Reconfig request status

Snapshot request

Ground

Telemetry,
Parameter

Server

FopCommand Context Diagram

3.3.2

FopCommand Interfaces
Table 3.3.2. FopCommand Interfaces

Interface Interface Interface Service Service Frequency
Service Class Class Provider User
Description
Recieve FoGnCmd Recieve binary | CMD: CMD: once per
CLCWs from Ground telemetry from | Fop Fop second
EDOS StationlF EDOS
Send CLTUs FoGn Sends CLTUs | CMD: CMD: once per
CmdFop to the Transmit | Transmit Fop command
Transmit Command
Proxy process
FcGnTcCltu | Message class
fora CLTU
Send ack- FoGnFop Sends CMD: CMD: twice per
nowledge- Format acknow- Format Fop command
ments Proxy ledgments to
the Format
Command
process
Receive FoGnCmd Receives CMD: CMD: once per
commands FopFormat | Cmds & Fop Format command
and directives |F directives
from
FormatComm
and process
Provide FoGnCmd Receive CMD: RMS: >2 x5 per
Configur- Fop directives Fop String pass, or
ation RmsIF (other than Manager | <280/ day
Info commands)
Provides FoGn Distribution of | Parameter | CMD: >2 x5 per
access to Parameter updated Server Fop pass, or
data values Server values to other < 280/ day
processes
Event FAEVEvent Provides DMS: CMD: Once per
Logging Logger routing and FdEvEvent | Fop command
archiving of Archiver
events
messages

3-128

305-CD-045-001

3.3.3 FopCommand Object Model Description

The FopCommand process is an implementation of CCSDS Frame Operation Procedure (FOP)
protocol. Together with on board Frame Acceptance and Reporting Mechanism (FARM), it
ensures type-A frames to be accepted by the spacecraft only if they are in strict sequential order.
It utilizes sequentia (" go-back-n") retransmission techniquesto correct Telecommand Framesthat
were regjected by the spacecraft because of error. This process accepts commands (in 1553B
format) or memory load packets (in CCSDS packet format) from FormatCommand process, builds
them into CCSDS transfer frame format and sends them to TransmitCommand process. The
FopCommand process must al so accept directivesfrom other processes, aswell as process CLCWs
from the satellite which keep it up to date on what commands have been accepted onboard.

FcCmCcsdsFop class is the controller of the process. It establishes connections with other
subsystems and command processes when initialized. It then waits on system interfaces for inputs
from other subsystems and command processes. When an input arrives, FcCmCcsdsFop class asks
the corresponding interface class to handle input message. The interface class returns an instance
of FoFopRequest. Because the Execute operation of FoFopRequest class is polymorphic, each
instance of class derived from FoFopRequest knows which operations of FcCmFopState class need
to be invoked to correctly process the specific request. FcCmCcsdsFop then del egates the request
to the current active FcCmFopState. A request is processed differently depending on the current
active state of the Fop protocol.

FcCmFFopState represents the state of Fop protocol. It has six derived classes with each of them
represents a different operational Fop state. FcCmFopState class declares an interface common to
all of itssix subclasses. It also defines all the common behavior of the subsequent derived states.
A FcCmFopState object can be in one of six different states: FcCmFopActive, FcCmFoplnitial,
FcCminitializeWithBc, FcCmFopl nitializeWithoutBc, FcCmFopRxmitWithWait, and
FcCmFopRxmitWithoutWait. When FcCmFopState receives a request from FcCmCcsdsFop, it
responds differently depending on its current state. For example, the effect of an uplink a new
command request depends on whether the FcCmFopState isin its active or initial state.

FcCmFoplnitial isasubclass of FcCmFopState. It implements Fop initial state specific behavior.
FcCmFopActiveisasubclass of FcCmFopState. 1t implements Fop active state specific behavior.

FcCmFoplnitializeWithoutBc is a subclass of FcCmFopState. It implements Fop "Initializing
without BC Frame" state specific behavior.

FcCmFoplnitializeWithBc is a subclass of FcCmFopState. It implements Fop "Initializing with
BC Frame" state specific behavior.

FcCmFopRmitWithWait is a subclass of FcCmFopState. It implements Fop "Retransmit with
Wait" state specific behavior.

FcCmFopRmitWithoutWait is a subclass of FcCmFopState. It implements Fop "Retransmit
without Wait" state specific behavior.

FoPsClientl F isthe proxy classfor parameter server. FopCommand process uses this class to send
parameter updates to parameter server.

FoGnCmdFopTransmitProxy is a proxy class provided by TransmitCommand process. It is used
by FopCommand process to send CLTUsto TransmitCommand process.

3-129 305-CD-045-001

FcCdFopFormatProxy is a proxy class provided by FormatCommand process. It is used by
FopCommand process to send acceptance and uplink status to FormatCommand process.

FoGnCmdFopFormatlF is the interface class, from which FopCommand process receives
command data from FormatCommand process.

FoGnCmdFopRmslF is the class from which FopCommand process receives RM S directives.

FoGnCmdFopRmsProxy is the proxy class that FopCommand process provided for RMS
subsystem. This class resides in RMS subsystem and is used by RMS to send directives to
FopCommand process.

FoGnCmdFopGroundStationlF is the class from which FopCommand process receives CLCW
from EDOS.

FoFopRequest is an abstract class. It isthe base classfor all request objects. When the first input
arrives, the corresponding interface interprets the input and creates an instance of a specific request
object. At instantiation time, the request object is given the visibility to the FcCmCcsdsFop class,
therefor it knows how to invoke the corresponding operation of FcCmCcsdsFop. FcCmRequest has
an abstract Execute operation. Thisallowsall request to be executed the same way without having
to identify the request.

FoGnRmsReq isatype of FoFopRequest. It definesacommoninterfacefor all request from RMS.

FoGnStartAdWithoutClcwReq is a type of FoGnRmsReq. It defines a binding between RMS
"Start AD service without CLCW check" request and StartAdWithoutClcw function of
FcCmCcsdsFop class.

FoGnStartAdwWithClcwCheckReq is atype of FOGnRmsReq. It defines abinding between RMS's
"Start AD service with a CLCW check" request and the StartAdwWithClcwChek function of
FcCmCcsdsFop class.

FoGnResumeAdServiceReq is a type of FOGnRmsReq. It defines a binding between RMS's
"Resume AD service" request and the ResumeAdService function of FcCmCcsdsFop class.

FoGnTerminateAdReq is atype of FOGnRmsReq. It defines a binding between RMS "Terminate
AD service" request and TerminateAdService function of FcCmCcsdsFop class.

FoGnSetVsReq is a type of FoGnRmsReq. It defines a binding between RMS's "Set ground
transmitter sequence number” request and the SetV's function of FcCmCcsdsFop class.

FoGnSetWinWidthReq is atype of FOGnRmsReq. It defines a binding between RMS's " Set Fop
sliding window width" request and the SetWinWidth function of FcCmCcsdsFop class.

FoGnSetTimelnitiaValReq is atype of FOGnRmsReq. It defines a binding between RMS's " Set
timeout initial value" request and SetTimelnitial Val function of FcCmCcsdsFop class.

FoGnSetTransmissionLimitReq is a type of FOGNnRmsReq. It defines a binding between RMS's
"Set transmission Limit" request and the SetTransmissionLimit function of FcCmCcsdsFop class.

FoGnSelectCtiuReq is atype of FOGnRmsReg. It defines abinding between RMS's™ Select Ctiu”
reguest and the SelectCtiu function of FcCmCcsdsFop class.

FoGnGetConfigSnapshotReq is a type of FOGnRmsReq. It defines a binding between RM S " Get
Configuration snapshot” request and GetConfigSnapshot function of FcCmCcsdsFop class.

FoGnChangeRoleReq is a type of FOGhRmsReg. It defines a binding between RM S "change the

3-130 305-CD-045-001

state of current string (to Primary, Backup or Inactive)" request and the ChangeRole function of
FcCmCcsdsFop class.

FoGnShutdownFopReq is atype of FOGNRmsReq. It defines a binding between RM S "shut down
Fop" request and the ShutdownFop function of FcCmCcsdsFop class.

FcGnFormatProcessReq is atype of FoFopRequest. It defines acommon interface for all request
from FormatComand process.

FcGnProcessRtCmdReq is a type of FcGnFormatProcessReg. It defines a binding between a
request to uplink a real time command (in 1553B format) and the ProcessRtCmd function of
FcCmCcsdsFop class.

FcGnProcessL oadPacketReq is atype of FcGnFormatCommandReq. It defines a binding between
arequest to uplink a memory load packet (in CCSDS packet format) and the ProcessL oadPacket
function of the FcCmCcsdsFop class.

FoGnProcessClcwReq is a type of FoFopRequest. This class is responsible for preliminary
processing of a CLCW. It first checks the validity of a CLCW bit pattern against the CCSDS
standard. It then decommutates the CLCW. This request also defines a binding between a CLCW
and the ProcessClcw function of FcCmCcsdsFop class.

FcCmTcFrame is responsible for building transfer frame according to the CCSDS format. When
receives a real time command (in 1553B format) or a memory load packet (in CCSDS packet
format) from FcCmCcsdsFop class, FcCmFopState first creates an instance of FcCmTcFrame
which knows how to build a CCSDS frame from a 1553B real time command or a memory load
packet. FcCmFopState then asks FcCmTcFrame class to build a CCSDS frame and also the
corresponding CLTU. Once this is done, FcCmFopState sends the CLTU to the
TransmitCommand process via its proxy where the CLTU is uplinked. Finally, FcCmFopState
saves the current instance of FcCmTcFrame in the command sent queue until the frame is receipt
verified by a CLCW. Once this command is CLCW verified, the copy of FcCmTcFrame is then
deleted from the command sent queue. FcCmFcFrameisthe aggregation of FcCmT cFrameHeader,
FcCmFrameData and FcCmFrameCrc. Each part knows how to build itself on demand.

FcCmTcFrameHeader is responsible for building transfer frame header according to the CCSDS
format.

FcCmTcFrameDataisresponsible for building transfer frame data portion. It isthe aggregation of
FcCmTcPacketHeader and FcCmTcPacketData. Each part knows how to build itself on demand.

FcCmcFrameCrc is responsible for calculating the crc check code for the entire content of a
transfer frame.

FcCmTcPacketHeader isresponsible for building the Tc Packet header according to the CCSDS
format.

FcCmTcPacketData is responsible for building the packet data portion according to the CCSDS
format.

FcGnTcCltu is the data structure to be send to TransmitCommand process. After the frame is
build, FcCmTcFrame creates an instance of FcGnTcCltu which contains the CLTU for current
transfer frame. The FcGnTcCltu object is then passed to Command Transmit process. It isthen
uplinked to satellite via EDOS.

3-131 305-CD-045-001

1€

T00-G0-AD-S0E

Note: Proxy resides in FormatCommand process

Format task Proxy

“Transmit task Proxy

Figure 3.3.3-1. FopCommand Object Diagram

] [~} L]
FoCmCCSDSFopProxy FaEvEventogger FeCdFopFommalProxy FoGnCmaFopTransmitProxy
+ ProcessLoadPackel(ECTUChar", EcTint, FeTCALoadStage) EcTBoolean ‘GenEveni(RWCString" msg) + SendAccepl(EcTint SeqNum) : EcTVoid FoSnCndFopTaramiPron 0
+ ProcessRIC(EcTUChar", EcTint, EcTBoolean) EcTBoolean eaNum, EcTBoolean status) EcTvoid ~FoGnCmdFopTransmiProxy()
. Senuc\m(:ccn!cc\m ciu)
Note: See FopCommand_TcFrame
sends real time command 5] occessed by ccesedby object model for derails.
and memory load packet to =
u FeCmFopState
FeCmTorrame
[T —— ~ myStoredLockouiFlag - enum (ON, OFF }
- mySotredWaitFlag enum { ON, OFF }
T myListenport - EcTint - msiredRerartisg _:enum (O OFF)
- myEvenilog : FdEvEventLogger - myFrameSeaNo
- myFormaiAddress ; RWCSiring accessed by accessedby 1 veivaiveaiscalscabiesqueue
- myCmdSentQue : RWiistCollectablesQueue.
+ IntFormai(RWCSting_myFormataddress) EcTint " myCurFrame : FeCmTcFrame
+ Handlelnput() : RWCollectable* accessed by - myToBeRetranFlag : enum { ON, OFF } creates
- - myExpectedAckSeqNo : EcTUShortint
FoGnCmdFopGroundStationlF © myTimerlnitalval - : EcTULongint |
- myTransmiLimit : EcTUInt =5
- myGroundStationAdd RWCString - myTransmitCounter : EcTUInt FecnTeciu
- myEventlog :FdEvEventLogger" - inWi ~ myCluSize :EcTUINt
- myTimeoutType : EcTBoolean - myClu - RWCSting*
+ iniGroundStaionlF(RWCString myGroundSiationAdd) EcTint - mySuspendState : EcTUInt - myLoadid : RWCString®
cremes + Handlelnput) - RWCollectable* - myVs :EcTUInt - myCluType : enum (RealTime, StartOfLoad, MiddleOfL oad EndOfLoad)
: - myRole : enum{ Primary, Backup , Inactive}
- mycii Enum(anar\/ Backup) + FeonTeon
- accesedty © o - Foomcosten T Seamacino
. ooy L fTansmiy - FobrCmdFopTransmiProxy } EEmRWColecabeCu) _ RWBae
- myFormatProxy : FeCdFopFormalProxy” + GelCIU(RWCString* Citt) : EcTVoi
~ myScld : EcTUIn. - myPUTORms : FoGnCmdFopRmsIF* + SeCHu(RWCString® Cltv) Fidvir
- - mybblid : EcTUInt - myEventlog : FAEVEventLogger + SeCluSize(EcTUIntsize) : EcTVoid
- myRole :enum { Backup, Primary , Inactive} - myParaServerProxy FoPsClientiF* + GetCluSize() :EcTUInt
FeCmRequest - myMode : enum (RealTime, Simulation } + el Loadid) : EcTVoid
ki - enum {ON, OFF } = ON T IEeCnersdsrop:) EeTi + SelLoadd(RWCString* Loadld) : EcTVoid
T " - myConfigFile : RWCString *+ ConfigRWSet myParameterSet) : EcTI + SetCluType(enum CltuTy EcTVoi
+ Execute(FeCmCesdsFop *fop) : virtual EcTint) iu e rapSie | nasisstate | . processClow(EcTUShor, Ecrsno\ean) virtual EcTVoid + (SSZ:(:)\;T);::(;ue: e e
" myliToRms. : FoGnCmdFopRMSIF + ProcessRICMA(RWCallectable vitual EcTVoid
ot:gee FopCommard Reues . myifToCmaFomar - FoGaomdFopFormatiF* + PmcessLoaﬂPacket(RWCol\ecmhlemyPackel) - virtual EVTVoid
) FoonG + StanAdWihClewCheck() : virual EVTVoid
created by - myEventLog : FAEVEventLogger + StartAdwithoutClowCheck() : vitrual EcTVoid
_ myFopinEffect - EcTBoolean + TeminateAdService(Void
+ esumeAdService() virtual EcTVoid
™1 + Ini(ECTInt argc, EcTChar ~argv) - EcTint + SelVs(ECTUINt myNewVs) - virtual EcTVoid
+ Run) oid + SetWinWidin(EcTUINt myWinWidth) - EcTVoid
FoGnCmdFopRmsIF + Configuration(RWCString myConfiginfo) : EcTVoid + SefTimerlnialVal(EcTULongint myTival) - EcTVoid
YT + StarFop) :EcTvoid delagaten recuestin + SefTransmissionLimi(EcTUInt myLimiy) : EcTVoid
T evion FbvEvent ogger accessed by + ShudownFop) ¢ SelTmenuTypoEcTboolommTmenuType) EcTVod
+ ProcessClow(EcTUShort EcTBoolen) EcTVoid + GelConfigSnapshol() ~ : RWCStiing ||
+ ni(ECTInt, EcTChar) : EcTint + ProcessRICMA(RWCallectable myRiCmd) : ECTVoid + ChangeRole(enum RoleType mwme) EcTVoid FoPsClientlF
+ SendStaus(RWCString) - EcTVoid + ProcessLoadPackei(RWCollectable myPacket) EcTVoid + Selecicnu(eauwmycw) EcTVoid
+ Handielnput) : RWCollectable* + StartAdwithoutClowCheck() i + |— serves parameter —— - myAddress : RWCString
+ StanAdWithClowCheck() : EcTVoid + shumwno Echd - myParameterTable : RWHashDictionary
+ ResumeAdService(:EcTVoid + IniateFrameTransmit) : EcTVoid
4 TerminateAdService() : EcTVoid + BuildFrame(RWCollectable myNewCmd) FeGnTeCltu + RegisterClient(Cid, Address, Mode, PidList) EcTint
+ SelVs(ECTUIN myNewVs) : EcTVoid + TransmitFrame(FeGnTcClu myChy) : EcTVoid + UpdateParameters(PidBuffer) EcTVoid
4 SetWinWidth(ECTUInt myWinWidth) EcTVoid + InitiateAdRetran() : EcTVoid + UnregisterClient(Cid) : EcTVoid
+ SeTimerlntalVal(EcTULongint myT1iniial) - EcTVoid + RemovedAckedFrame() : EcTVoid + Updatelnterests(Cid PidList) ~ : EcTint
from + SefTransmissionLimit(EcTUINt myLimit) ~ : EcTVoid + AddFrameToSendQue() : ECTVoid
+ SetTimeouType(EcTBoolean myTimioutType) EcTVoid + AddFrameToWaitQue() : EcTVoid
1 SeertuEctomy - EeTvold + SefTimeHandler() - EcTint
+ GetConfigSnapshot)) : EcTVoid + StnTimer) :EcTVoid
+ ChangeRole(RoleType myRole) EcTVoid + StopTimer() : EcTVoid
- + ChangeState(FeCmFopState®) : EcTVoid + HandleTimeout() : Virual EcTVoid
FoGnCmaFopRmsProxy
+ GetConfigSnapshot() EcTVoi] [~} ™1
+ ChangeRole(enum RoleType myRoIe; EcTvoid
+ SanAMWihouCkow) : EeTvaid FeCmFopActive FeCmFopRXIWT WA FeCmFopinilalizeWihoutBs
+ StatAdWithClewCheck() - EcTVoid
: Tzrsm:?:»\go JEemven R Zﬁiﬂiﬂfﬁfﬁi@iﬂiﬂf’ﬁ"Tflksﬂ Emal + PrcesRCWClecle mRCR) _ EeTVod + ProcessClow(ECTUShort, EcTBoolean) : EcTVoid
L ceeTom mpe) - el + PmbessCIcthcTuSnnan,‘ECTBnuleam EcTVoid + ProcessLoadPackel(RWCollectable myPacket) EvTVoid
& SetWinWidth(ECTUINt myWinWidth) EcTVoid * HandieTimeout(: EcTVold * HandeTimeou) - EcTvod
+ SetTimelniialval(EcTULongint myT1val) : EcTVoid ™
+ SetTransmissionLimit(ECTUInt myLimit) EcTVoid] |
+ SetTimeoutType(EcTBoolean myTimeoutType) EcTVoid FeCmFopRxmitWithoutwait FeCmFopiniialzeWihBe FeCmFopinital
+ ShutdownFop() : EcTVoid
+ ProcessRICTA(RWCollectable myRiCmd) < EcTVold T PG ECTUS . ExTanen) Eervod + ProcessClow(EcTUShortint .. EcTBoolean) : EcTVoid
+ ProcessLoadPacket(RWCollectable myPacket) EcTVoid + HandleTimeout) : EcTVoi + ProcessRICMd(RWCollectable myRICmd) ECTV
Note: Proxy resdes n RIS subsystem + ProcessClow(EcTUShortin, ... EcTBoolean) EcTVoid + ProcessR mmwca..ec.amm (Cmd) TVoid + ProcessLoadPackel(RWCollectable myLoadPacke) EcTvoid
+ HandleTimeout) : EcTVoid + ProcessLoadPackel(RWCollectable myPacket) EcTvoid + StrAdWithClowCheck() : EcTVoid
. EcTvoid
+ ResumeAdService() ~ : EcTVoid
+ SetVs(ECTUINt myNewVs) : EcTVoid
+ HandleTimeout() :EcTVoid

eeT€

T00-G0-AD-S0E

FoFopRequest

[FExecute(FeCmCesdsFop *fop): virual EcTint|

FoGnChangeRoleReq

‘Execute(FeCmCasdsFop “fop) - EcTint

] [l
FeGnFormaiProcessReq
FoGnProcessClonReq FoGnRmsReq
[+ Exectte(FecmCesdsFop fop): vinual £GT - myCurClow EcTUInt — myDireclve_: RWCSiring
- myWaitFlag : EcTBoolean
- myRetranFlag : EcTBoolean [+ Execute(FeCmCosdsFop *fop): virtual EcTH
- LockFl EcTBoolean |+ SetDirective() : EcTInt
- myNextExpectedSeqno : EcTUShortint
+ ValidateClew() : EcTint
Cl Cl + ArchiveClow) : EvIVoid
FcGnProcessLoadPacketReq FeGnProcessRICmdReq + DeComClow() : EcTint
+ Execute(FcCmCcsdsFop *fop) : EcTint
myPacket : RWCollectable - myRtCmd : RWCollectable
+ Execute(FcCmCesdsFop *fop) : EcTint + Execute(FcCmCesdsFop *fop) : EcTint
1 ~1 = = =]
FoGnTerminateAdReq FoGnseleciClioReq FoGnGeiConfigsnapshotReq FoGnResumeAdSeviceReq FoGnseinWiidihReq FoGnSetTmeiniialvalReq
~myGtu - EcTUmt T myFieName < RWCSiring mySuspendstate - ECTURT T mywinwidh EcTUint T myTIVal - EcTULongimt
+ Execute(FcCmCesdsFop *fop): EcTint
+ Execute(FeCmCesdsFop *fop) ¢ ECTINU + Execute(FcCmCesdsFop *fop) : EcTint + Execute(FcCmCcsdsFop *fop) - EcTInt + Execute(FcCmCesdsFop “fop) : ECTIN + Execute(FcCmCesdsFop fop) - EcTint
+ SetSuspendstate(ECTUINt myState) : ECTInt + SetWinWidth(ECTUIRt myWinWidh) EcTint| SetTimelnitialVal(EcTULong myT1val)
= = = = o ™
FoGnStanAdWithouCIcnReq FoGnStarAdWihClonCheckReq FoGnSetvsReq FoGnSetReransmissionLimitReq [T a———
myNewvs - EcTUShorint ~myLmit < EcTum P P vy
=~ Evecute(FeCmCosdsFop Top) - ECTInl T Execute (FeCmCosdsFop Top) - EcTint P
T Exccute(FcCmCosdsFop fop) - ECTINT T Exccute(FcCmCosdsFop Top) - EcTIC -
+ SetVs(ECTUINt myVs): EcTint + SetRetransmissionLimi(EcTUInt myLimit) : EcTint

Figure 3.3.3-2. FopCommand Request Message Object Diagram

vET-E

T00-G0-AD-S0E

FcCmTcFrame

myCltu : EcTUChar*

myFrame : EcTUChar*

myFrameSeqNo : EcTUShortInt
myToBeRetransmittedFlag : enum {on, off }
myUplinkStatus : enum{ good, bad }
myFrameType :enum{AD, BC}
myHeaderPtr : FcCmTcFrameHeader*
myPacketPtr : FcCmTcFramePacket*
myCrcPtr : FecCmTcFrameCrc*

BuildCltu() : FeCmTcCltu
BuildFrame(FcGnFopCmdMsg myRtCmd) : EcTint
BuildFrame(FcGnFopCmdMsg myPacket) 1 EcTInt

build build
FcCmTcFrameHeader FcCmTcFramePacket FcCmTcFrameCre
myBufferPtr : ECTUChar* ~ myPcketPtr : EcTUChar - myCrcTable : static ECTUInt*
myOffSet : EcTUInt - mylength :EcTUInt - myCrcPoly :EcTUInt
myLength : EcTUInt - myOffset : EcTUInt - myCrcval : EcTUInt
myVersionNo : EcTUInt =0 - myPacketHdPtr : FcCmTcPacketHeader* - myFrame :EcTUChar*
myBypassFlag : enum { ON, OFF } - myDataPtr : FcCmTcPacketData* - -
myControlCmdFlag : enum { ON, OFF } + BU!:Z(ECTUﬁhaT‘k). : EcTI‘r;t
myScld : EcTUInt + Build(EcTUChar*) : EcTInt + BuildCrcTable() : EcTVoi
myCtiuldentifier : EcTUInt
myVirtualChannelld : EcTUInt=0
mySequenceNo : EcTUShortint
Build(EcTUChar*) : EcTInt ; build
SetBits(ECTUINt, EcTUINY : EcTVoid build
GetBits(EcTUInt, EcTUInt) : EcTUInt
FcCmTcPacketHeader FcCmTcPacketData

- myBufferPtr : ECTUChar* myBufferPtr : EcTUChar*

- myOffset : EcTUInt mylLength : EcTUInt

- mylLength :EcTUInt myOffset : ECTUInt

- myApid :EcTUInt=0

- mySequenceFlag :EcTUInt=11 Build(EcTUChar*) : EcTint

- myPacketSeqNo : EcTUShortInt =0

- myPacketType :EcTUInt=1

- myVersionNo : EcTUInt=0

- mySecondaryHeaderFlag : EcTUInt=0

+ Build(ECTUChar*) :EcTInt

+ SetBits(EcTUInt, EcTUInt) : EcTVoid

+ GetBits(EcTUInt, EcTUInt) : EcTUInt

Figure 3.3.3-3. FopCommand TcFrame Object Diagram

3.3.4 FopCommand Dynamic Model Description

The following are the FopCommand scenarios which are defined in this section.
Real-Time Command FOP Initialization: Successful
Real-Time Command FOP Initialization: Failure
Real-Time Command FOP Init. AD Service w/out CLCW: Successful
Real-Time Command FOP Init. AD Service w/out CLCW: Failure
Real-Time Command FOP Init. AD Service with CLCW: Successful
Real-Time Command FOP Init. AD Service with CLCW: Failure
Real-Time Command FOP Init. AD Service with Set VR: Successful
Real-Time Command FOP Init. AD Service with Set VR: Failure
Real-Time Command FOP Command Transmission
Real-Time Command FOP Command Retransmission

Additionally, a state diagram for the FcCmCcsdsFop object isincluded.

3.3.4.1 Real-Time Command FOP Initialization: Successful Scenario

3.34.11 Real-Time Command FOP Initialization: Successful Abstract
The purpose of the "Real-Time Command FOP Initialization: Successful" scenario is to describe
the process by which the FOP (Frame Operation Procedure) software of the FopCommand process
isinitialized.
Figure 3.3.4.1-1 is the event trace diagram which corresponds to this scenario.
3.34.1.2 Real-Time Command FOP Initialization: Successful Summary Information
Interfaces:
Parameter Server
Data Management Subsystem
Resource Management Subsystem
FormatCommand
TransmitCommand
Stimulus:
The Resource Manager (RMS) starts up the FopCommand process.
Desired Response:
The Resource Management receives the status of successful FOP initialization.
Pre-Conditions:
Configuration file must be identified and available.
Post-Conditions:
The FOP isplaced in the "initial" state, and ready for directives.

3-135 305-CD-045-001

3.34.1.3 Scenario Description

The main operation of the FopCommand application (FCCmFopAppl) is invoked when the
Resource Manager (RMS) starts up the process. The command line will contain the | P address of
the RMS. Thisaddressis forwarded to the FcCmCcsdsFop, the controller of the FOP processing.
The IP addressis used to establish communication with the RM S, via FoGnCmdFopRmsIF. Once
communication is established, FopCommand process sends a message to RMS subsystem and
informs it that the process is ready. The FopCommand then waits for a configuration request
message from RMS. Upon receipt of the message, the message is read and input parameters are
extracted from the message. These parameters contain IP addresses which are used to establish
communications with other processes, specifically Parameter Server, and the Command processes
FormatCommand and TransmitCommand. Other parameters include the spacecraft 1D, database
ID, and the process "role" as part of a either a primary or backup string. The DMS and EDOS
addresses are looked up from a name server.

A DMS connection is established via FdEVEventL ogger for events processing.

FoDsFile is then utilized to access the database file. The file information is used to configure the
FOP attributes and will contain default values for various attributes. This configuration
information is then used to configure the FOP.

Next, the Parameter Server, the FormatCommand process and the TransmitCommand process
connections are established via FoPsClientl F, FcCmdFopFormatl F and FcCmFopTransmitProxy
objects respectively.

Finaly, an FcCmFopState object (as a derived FcCmFoplnitial object) is created and initialized,
and theinitialization is complete.

A "successful initialization" event message is logged via FAEvVEventLogger, and a successful
completion status is returned to RM S,

3-136 305-CD-045-001

LET-E

T00-G0-AD-S0E

FeCmFopApp! FeCmCesdsFop

wait for config
info from RMS

read config info
rom the incoming
mesg

flom name server

initiate connection
(RMS address)

l&——— RWs config message arived

FoGnCmdFopRmsIF

—_—>

notify RMS we are awake ————3>{

FoDsFile

FdEVEveniLogger

noltiity connected

info

ParameterSever

FeCmCmdFopFormatiF

successfully connected

initiate connection (1

ransmitCommand process address)

FoGnCmdFopTransmsitProxy

FeCmFopState

config parameter set)

fop configured successfully ——3>{

I&———— configured successfully ————|

Figure 3.3.4.1-1. FopCommand Initialization: Successful

configured successfuly

successiully configured

3.3.4.2 Real-Time Command FOP Initialization: Failure Scenario

3.34.2.1 Real-Time Command FOP Initialization: Failure Abstract

The purpose of the "Real-Time Command FOP Initialization: Failure" scenario is to describe the
process by which the FOP (Frame Operation Procedure) software of the FopCommand process
handles afatal error during initialization.

Figure 3.3.4.2-1 is the event trace diagram which corresponds to this scenario.

3.3.4.2.2 Real-Time Command FOP Initialization: Failure Summary Information
Interfaces:

Data Management Subsystem

Resource Management Subsystem
Stimulus:

The Resource Manager (RMS) starts up the FopCommand process.
Desired Response:

The Resource Management receives the failure status regarding FOP initialization.
Pre-Conditions:

Configuration file must be identified and available.
Post-Conditions:

The Resource Management is notified of the failure.

3.34.23 Scenario Description

The main operation of the FopCommand application (FCCmFopAppl) is invoked when the
Resource Manager (RMS) starts up the process. The command line will contain the | P address of
the RMS. Thisaddressisforwarded to the FcCmCcsdsFop, the controller of the FOP processing.
The P addressis used to establish communication with the RM S, via FoGnCmdFopRmsIF. Once
communication is established, FopCommand process sends a message to RMS subsystem and
informs it that the process is ready. The FopCommand then waits for a configuration request
message from RMS. Upon receipt of the message, the message is read and input parameters are
extracted from the message. These parameters contain |P addresses which are used to establish
communications with other processes, specifically the Parameter Server, and the Command
processes FormatCommand and TransmitCommand. Other parameters include the spacecraft ID,
database 1D, and the process "role" as part of a either a primary or backup string. The DMS and
EDOS addresses are |ooked up from a name server.

An attempt is made to establish connection with DM S via FAEvEventL ogger for events processing.
However, the connection is unsuccessful, and a Failure completion statusis returned to RMS.

3-138 305-CD-045-001

6ET-€

T00-G0-AD-S0E

FcCmFopAppl

FcCmCcsdsFop FoGnCmd
init (RMS address) ——— >
initiate connection S
(RMS address)
————notify RMS we are awake —>>
1
ait for config
info from RMS
<

frol

get [l
add

I<<—— RMS configuration info arrived ——

1

ad config info

M the incoming
mesg

<<

—
DMS and EDOS
esses from the
ame server

<&<—initialization failed

initiate connection (1

<< connectid

Figure 3.3.4.2-1. FopCommand Initialization: Failure Scenario

FopRmsIF

DMS address)

FdEvEventLogger

n failed

3.3.4.3 Real-Time Command FOP Init. AD Service w/out CLCW: Successful
Scenario

3.34.3.1 Real-Time Command FOP Init. AD Service w/out CLCW: Successful Abstract

The purpose of the "Real-Time Command FOP Init. AD Service w/out CLCW: Successful”
scenario isto describe the process by which the FOP (Frame Operation Procedure) software of the
FopCommand task is configured to uplink commands, without waiting for a"clear" CLCW.

Figure 3.3.4.3-1 is the event trace diagram which corresponds to this scenario.
3.3.4.3.2 Real-Time Command FOP Init. AD Service w/out CLCW: Successful Summary
Information
Interfaces:
Data Management Subsystem
Resource Management Subsystem
Stimulus:
The Resource Manager (RMS) forwards the "Initialize w/out CLCW" directive.
Desired Response:
The FOP is placed in the "active" state.
Pre-Conditions:
FOPisinthe"initial" state.
Post-Conditions:
The FOPisin "active" state and ready to process formatted commands.

3.3.4.3.3 Scenario Description

The FOP isin the "initial" state and waiting for directives. Upon arrival of the "initialize w/out
clew" directive from RMS, the FoGnCmdFopRmsl F creates a request object which corresponds to
the directive; FoGnStartAdWithoutClcwReq. This object, in turn, echoes the directive via
FoEVEventL ogger. It then indirectly (via FcCmCcsdsFop) invokes the
StartAdWithoutClcwCheck operation of FcCmFopState, which successfully initializes the FOP.
A success event message is logged, the Resource Manager is notified of the successful processing
of the directive and the FOP is placed in the "active" state.

3-140 305-CD-045-001

wi-€

T00-G0-AD-S0E

FoGnStartAdWithoutClcwReq

< request object |

start AD service without clew check

FoGnCmdFopRmsIF

<&——handle input

FcCmCcsdsFop

) .
walt for input in
Fop Initial state
(S6)
=&

notified directive
arriged from RMS
<~

create

< F

with

message to RMS

«<——F
—

whit for input in
Fqp Active state
(S1)

start AD service

FcCmFoplnitial

echo received directive

ut clew check

end AD service successfully initialized

hange state to
active (S1)

—>>

dog
an

initialization
d successful

log AD service

successfully initialized———>>|
message

log Fop state
changing mesg >

Figure 3.3.4.3-1. FopCommand Init. AD Service w/out CLCW: Successful

FdEvEventLogger

3.3.4.4 Real-Time Command FOP Init. AD Service w/out CLCW: Failure Scenario

3.34.4.1 Real-Time Command FOP Init. AD Service w/out CLCW: Failure Abstract

The purpose of the "Real-Time Command FOP Init. AD Service w/out CLCW: Failure" scenario
is to describe the process by which the FOP (Frame Operation Procedure) software of the
FopCommand task recovers from an unsuccessful attempt to configured for uplink commands,
without waiting for a"clear” CLCW.

Figure 3.3.4.4-1 is the event trace diagram which corresponds to this scenario.

3.34.4.2 Real-Time Command FOP Init. AD Service w/out CLCW: Failure Summary Information
Interfaces:
Data Management Subsystem
Resource Management Subsystem
Stimulus:
The Resource Manager (RMS) forwards the "Initialize w/out CLCW" directive.
Desired Response:
The FOP remainsin the "initial" state.
Pre-Conditions:
FOPisinthe"initial" state.
Post-Conditions:
FOPisinthe"initial" state.

3.3.4.4.3 Scenario Description

The FOP isin the "initial" state and waiting for directives. Upon arrival of the "initialize w/out
clew" directive from RMS, the FoGnCmdFopRmsl F creates a request object which corresponds to
the directive; FoGnStartAdWithoutClcwReq. This object, in turn, echoes the directive via
FdEVEventL ogger. It then indirectly (via FcCmCcsdsFop) invokes the
StartAdWithoutClcwCheck operation of FcCmFopState, which fails to initialize the FOP. A
failure event message is logged, the Resource Manager is notified of the failure to process the
directive and the FOP is left in the "initial" state.

3-142 305-CD-045-001

evl-€

T00-G0-AD-S0E

FoGnStartAdWithoutClcwReq

FoGnCmd

FopRmsIF

waj
Fo

no|
arr

FcCmCcsdsFop

))
t for input in
b Initial state
(S6)
==

tified directive
ed from RMS

<& handle input

create

<< request object

start AD service wi

thout clcw check >>

send AD servicd
< messag

w4
Fq

Start AD service

Initialization failed
je to RMS

it for input in
p Initial state
(S6)

echo received directive

withut clcw check

FcCmFoplnitial

—>>

dog

initialization
land failed

Log AD service

—————initialization failed———>>

message

Figure 3.3.4.4-1. FopCommand Init. AD Service w/out CLCW: Failure scenario

FdEvEventLogger

3.3.4.5 Real-Time Command FOP Init. AD Service with CLCW: Successful Scenario

3.345.1 Real-Time Command FOP Init. AD Service with CLCW: Successful Abstract

The purpose of the"Real-Time Command FOP Init. AD Servicewith CLCW: Successful” scenario
is to describe the process by which the FOP (Frame Operation Procedure) software of the
FopCommand processis configured to uplink commands upon receipt of a"clean” CLCW; i.e., the
Wait, Retransmit and Lockout flags are "off", and the sequence number equals its expected val ue.

Figure 3.3.4.5-1 is the event trace diagram which corresponds to this scenario.
3.3.4.5.2 Real-Time Command FOP Init. AD Service with CLCW: Successful Summary
Information
Interfaces:
EDOS
Data Management Subsystem
Resource Management Subsystem
Stimulus:
The Resource Manager (RMS) forwards the "Initialize w/out CLCW" directive.
Desired Response:
The FOP is placed in the "active" state.
Pre-Conditions:
FOPisinthe"initia" state.
Post-Conditions:
The FOPisin "active" state and ready to process formatted commands.

3.3.4.5.3 Scenario Description

The FOP is in the "initial" state and waiting for directives. Upon arrival of the "initialize with
CLCW" directive from RMS, the FoGnCmdFopRmslI F creates arequest object that correspondsto
the directive; FoGnStartAdWithClcwReg. It then indirectly (via FcCmCcsdsFop) invokes the
StartAdWithClcwCheck operation of FcCmFopState, which successfully initializes the FOP and
sets the timer (used for detection of certain retransmission circumstances). An event message for
state changeisissued, and FopProcess goesinto await, in the "initializing without BC frame" state,
waiting for either the timer, or adirective.

3-144 305-CD-045-001

1174 I >

T00-G0-AD-S0E

FoDsFile

FoGnCmdF lcwReq FoGnCmdFopRmSIF FoGnStartAdWithClewCheckReq FeCmCesdsFop FcCmFoplnitial FcCmFoplnitializeWithoutBe
.
wait for input in the
initlal state (S6)
"
notified directive
arrijed from RMS
request obj
start AD service with >
CLCW check start AD service. >
With CLCW check
Iset timer
h: tate fanged
change state to
< hitializing without BC Framé
[
wait for input in
Initializirlg without BC frame
state (S4)
ez
1
notifiefl CLCW arrived
cLe request objs
cLey
LC
Pro ;st cLew
[
CLEW indicates
lean status
1
cancel
timer
D service
D servjce
log Fop state changing >
h statg to Fop mesg
whit for input in
Fop pctive state (S1)

Figure 3.3.4.5-1. FopCommand Init. AD Service with CLCW: Successful

FdEvEventLogger

Upon arrival of a CLCW, the FoGnCmdFopGroundStationl F archives the CLCW via FoDsFile,
and creates a request object that corresponds to the directive; FoGnProcessClcwReq.
FoGnProcessClcwReq routes the CLCW through FcCmCcsdsFop to
FcCmFopl nitializeWithoutBc for processing. The CLCW indicates a"clean” status, so a success
event message is logged, the Resource Manager is notified of the successful processing of the
directive and the FOP is placed in the "active" state.

3.3.4.6 Real-Time Command FOP Init. AD Service with CLCW: Failure Scenario

3.34.6.1 Real-Time Command FOP Init. AD Service with CLCW: Failure Abstract

The purpose of the "Real-Time Command FOP Init. AD Service with CLCW: Failure" scenario is
to describe the process by which the FOP (Frame Operation Procedure) software of the
FopCommand process responds to a failure in the attempt to configure to uplink commands upon
receipt of a"clean" CLCW.

Figure 3.3.4.6-1 is the event trace diagram which corresponds to this scenario.

3.3.4.6.2 Real-Time Command FOP Init. AD Service with CLCW: Failure Summary Information
Interfaces:

EDOS

Data Management Subsystem

Resource Management Subsystem
Stimulus:

The Resource Manager (RMS) forwards the "Initialize w/out CLCW" directive.
Desired Response:

Appropriate error messages are logged, and the FOP remains in the "initial" state.
Pre-Conditions:

FOPisinthe"initia" state.
Post-Conditions:

The FOPremainsin "initial" state.

3.3.4.6.3 Scenario Description

The FOP is in the "initial" state and waiting for directives. Upon arrival of the "initialize with
CLCW" directivefrom RMS, the FoGnCmdFopRmsl F creates arequest object that correspondsto
the directive; FoGnStartAdWithClcwReg. It then indirectly (via FcCmCcsdsFop) invokes the
StartAdWithClcwCheck operation of FcCmFopState, which successfully initializes the FOP and
sets the timer (used for detection of certain retransmission circumstances). An event message for
state change is issued, and FopCommand process goes into await, in the "initializing without BC
frame" state, waiting for either the timer, or adirective.

3-146 305-CD-045-001

Upon arrival of a CLCW, the FoGnCmdFopGroundStationl F archives the CLCW via FoDsFile,
and creates a request object that corresponds to the directive; FoGnProcessClcwReq.
FoGnProcessClcwReq routes the CLCW through FcCmCcsdsFop to
FcCmFopl nitializeWithoutBc for processing. The CLCW, however, indicates a"not clean” status
so a faillure event message is logged, the Resource Manager is notified of the failure in the
processing of the directive, and the FOP remains in the "initial" state.

3-147 305-CD-045-001

8r1-€

T00-G0-AD-S0E

FoDsFile

FoGNCi lewReq FoGnC: o F lewCheckReq FcCmCesdsFop FcCmFoplnitial FcCmFoplnitializeWithoutBc
.
watiing for input in the
inigal state (S6)
—
notfied directive
arriyed from RMS
<!
request obj 0 N
start AD service witl >
CLCW check start AD service. >
with CLCW check
set timer
log Fop state
change state to changing mesg
[<<—itializing without BC Frama |
wait for input in the
Initializing without BC frame
tate (S4)
1
notifiedd CLCW arrived
CLC
request obj
CLC
LC)
1
progess CLCW
L
CLCW indicates
no} clean status
1
cancel
timer
—AD Service initialization failed—3>
D Service
log Fop state
changing mesg
h sfate to .
wait for input
in Fop initial state
(S6)

Figure 3.3.4.6-1. FopCommand Init. AD Service with CLCW: Failure scenario

FdEVEventLogger

3.3.4.7 Real-Time Command FOP Init. AD Service with Set VR: Successful Scenario

3.34.7.1 Real-Time Command FOP Init. AD Service with Set VR: Successful Abstract

The purpose of the"Real-Time Command FOP Init. AD Servicewith Set VR: Successful” scenario
is to describe the process by which the FOP (Frame Operation Procedure) software of the
FopCommand process is configured to uplink commands in the "set VR" mode. This includes
uplinking of the BC type frame, which sets the FARM's sequence counter (VR) onboard the
Spacecraft.

Figure 3.3.4.7-1 is the event trace diagram which corresponds to this scenario.
3.3.4.7.2 Real-Time Command FOP Init. AD Service with Set VR: Successful Summary
Information
Interfaces:

EDOS

Data Management Subsystem

FormatCommand

TransmitCommand
Stimulus:

FormatCommand forwards the "Initialize with set VR" command.
Desired Response:

The FOP is placed in the "active" state, and the sequence counter onboard the spacecraft
has been set to the specified value.
Pre-Conditions:
FOPisinthe"initia" state.
Post-Conditions:
The FOPisin "active" state and ready to process formatted commands.

3.3.4.7.3 Scenario Description

The FOP is in the "initia" state and waiting for inputs. Upon arrival of a command from
CommandFormat process, the controller directs FoGnCmdFopFormat!F to create a request object
that corresponds to the incoming command, FcGnProcessRtCmdReq. It then indirectly (via
FcCmCcsdsFop) invokes the ProcessRtCmd operation of FcCmFoplnitial, which realizes it is a
control command by checking the command type flag. The FcCmFoplnitial then prepares CLTU
of aBC transfer frame for uplinking.

The Transfer Frame is composed of a CCSDS Packet, so thisisfirst built (viaFcCmTcPacketData
and FcCmTcPacketHeader). The Transfer Frame is completed by adding a header (via
FcCmTcFrameHeader) and calculating a CRC (via FcCmTcFrameCrc).

The completed transfer frame is then further processed into a CLTU (via FcCmTcCltu) which is
then added to the queue of commands sent, and forwarded to the TransmitCommand process (via
FoGnCmdFopTransmitProxy).

The timer (used for detection of certain retransmission circumstances) is then set, and control is

3-149 305-CD-045-001

returned to FcCmCcsdsFop in the Initializing with BC frame state, and waits for a CLCW
confirming its receipt.

Upon arrival of a CLCW, the FoGnCmdFopGroundStationl F archives the CLCW via FoDsFile,
and creates a request object that corresponds to the directive; FoGnProcessClcwReq.
FoGnProcessClcwReq routes the CLCW through FcCmCcsdsFop to FcCmFoplnitializeWithBce
for processing. The CLCW indicates a"clean" status, so a success event message is logged, the
Resource Manager is notified of the successful processing of the directive and the FOP is placed
in the "active" state.

3-150 305-CD-045-001

TGT-€

T00-G0-AD-S0E

FoDsFile FoGn

archive received
"G

FoGnCmdFopTransmitProxy

FdEVEventLogger

FoGnC R FecmCesdsFop P
—
walt for inputin
Fop iniial state
(s6)
=
noiifigd new command
rived from
FormaCommand process
creat request object ——3>1
f——— process new cma ——3>1
f—— process new cma ——3{
out
i a control
and
type[BC frame
1
build
build CLTU and create instance
of FeCiiTcCltu e
wansmit (CLTU)
start timer
log Fop state changing event mesg
change to initalizing
I<€— with BC frame state
(s9)
ait for CLCW in
tate S5
o
o
o
—
ngiified CLCW
arived
f—— create request object ——3>]
ow
cL
Prpcess CLCW and
ean status has
been seen
cancel timer
Fop successfully config anew sequence no
16 Fop successfully configed with a new seq num eve
og Fop State changing even! mesg
w©actve
wait input in
[Fop Actve state
G}

it mesg >

Figure 3.3.4.7-1. FopCommand Init. AD Service with set VR: Successful scenario

3.3.4.8 Real-Time Command FOP Init. AD Service with Set VR: Failure Scenario

3.3.4.8.1 Real-Time Command FOP Init. AD Service with Set VR: Failure Abstract

The purpose of the "Real-Time Command FOP Init. AD Servicewith Set VR: Failure" scenariois
to describe the process by which the FOP (Frame Operation Procedure) software of the
FopCommand process respondsto afailurein the attempt to configured to uplink commandsin the
"set VR" mode.

Figure 3.3.4.8-1 is the event trace diagram which corresponds to this scenario.

3.3.4.8.2 Real-Time Command FOP Init. AD Service with Set VR: Failure Summary Information
Interfaces:

EDOS

Data Management Subsystem

FormatCommand

TransmitCommand
Stimulus:

FormatCommand forwards the "Initialize with set VR" command.
Desired Response:

Appropriate error messages are logged, and the FOP remains in the "initial" state.
Pre-Conditions:

FOPisinthe"initia" state.
Post-Conditions:

The FOPremainsin "initial" state.

3.3.4.8.3 Scenario Description

The FOP is in the "initial" state and waiting for inputs. Upon arrival of a command from
CommandFormat process, the controller directs FoGnCmdFopFormat!| F to create a request object
that corresponds to the incoming command, FcGnProcessRtCmdReg. It then indirectly (via
FcCmCcsdsFop) invokes the ProcessRtCmd operation of FcCmFoplnitial, which realizes it is a
control command by checking the command type flag. The FcCmFoplnitia then prepares CLTU
of aBC transfer frame for uplinking.

The Transfer Frame is composed of a CCSDS Packet, so thisisfirst built (viaFcCmTcPacketData
and FcCmTcPacketHeader). The Transfer Frame is completed by adding a header (via
FcCmTcFrameHeader) and calculating a CRC (via FcCmTcFrameCrc).

The completed transfer frame is then further processed into a CLTU (via FcCmTcCltu) which is
then added to the queue of commands sent, and forwarded to the TransmitCommand process (via
FoGnCmdFopTransmitProxy).

The timer (used for detection of certain retransmission circumstances) is then set, and control is
returned to FcCmCcsdsFop in the Initiaizing with BC frame state, and waits for a CLCW
confirming its receipt.

3-152 305-CD-045-001

Upon arrival of a CLCW, the FoGnCmdFopGroundStationl F archives the CLCW via FoDsFile,
and creates a request object that corresponds to the directive; FoGnProcessClcwReq.
FoGnProcessClcwReq routes the CLCW through FcCmFop to FcCmFoplnitializewWithBe for
processing. The CLCW indicatesa"not clean" status, so the FOP remainsin the "Initializing with
BC frame" state.

A few more CLCWs are received, but none indicate a"clean" status.

Eventually, the timer expires before a CLCW indicating a "clean" status is received, and the BC
frame is retransmitted via FoGnCmdFopTransmitProxy. The timer is reset and the transmit
counter isincremented by 1.

The retransmission takes place afew more times, until eventually the transmit counter exceeds the
transmit limit. The directiveis deemed as having failed at this point. FOP shutdown procedureis
commenced, an event message indicating directive failure is logged via FdEvEventLogger,
FormatCommand is notified of the failure via FoGnCmdFopFormat|F, and the FOP is returned to
the "initial" state.

3-153 305-CD-045-001

12°1R>

T00-G0-AD-S0E

FoDsFile FoGnCr FeCmCesdsFop FeCmFopinitial FeC FoGnCr FdEvEventL

—
waif for nput in
Fog inital state

notifiednew cmd arrived
from FormbiCommand process

f——ereat request object—3>]

SEJ

fo

und out its a
contfol command

A

type|BC

1
buid

calulate CLTU afd create instange |
of FeCTeCly

(oL

M

tart

Fop state changng event

change (0 niializing

f<e—wih BC frame siate—y
)

ait for CLCW
in state S5

1t

notifigd CLEW arrived

£

archive received,
—"cew
[—sreate request objes—3>1

!
cess CLCW and

pro
clean statys not seen

—
coftinue wait for
CLEW in S5 state

time out Happened
transmiit
<wansiit fimit

initfate BC frame.

venansr.ssm

 —
retart tmer and
incrbment transmit

e

continpie walt for CLCW
ins:
o
o
o time out hajpened and
transnt imit
o shutdown
log AD sefvice configuration failed evefit mes;
133 Fop Staté changing mesg| | 1
uink
ait for input in
fop Inital state
6

Figure 3.3.4.8-1. FopCommand Init. AD Service with set VR: Failure scenario

3.3.4.9 Real-Time Command FOP Command Transmission Scenario

3.3.4.9.1 Real-Time Command FOP Command Transmission Abstract

The purpose of the "Real-Time Command FOP Command Transmission” scenario is to describe
the process by which the FOP (Frame Operation Procedure) software of the FopCommand process
processes a 1553-b command received from the FormatCommand process into a CLTU
conforming to CCSDS standards for the AM-1 spacecraft, and forwards the CLTU to the
TransmitCommand process.

Figure 3.3.4.9-1 and 3.3.4.9-2 are the event trace diagrams which correspond to this scenario.

3.3.4.9.2 Real-Time Command FOP Command Transmission Summary Information
Interfaces:

Data Management Subsystem

EDOS

FormatCommand

TransmitCommand
Stimulus:

A 1553-b command is forwarded to FopCommand by FormatCommand.
Desired Response:

CLTUs are forwarded to TransmitCommand.
Pre-Conditions:

FOPisinthe"active' state.
Post-Conditions:

FOP remainsin the "active" state.

3.3.4.9.3 Scenario Description

The scenario begins with FopCommand waiting for input in the Active state. FormatCommand
process forwards the first of three 1553-b commands in this scenario to FopCommand. The
following events transpire in response to receipt of acommand, and constitutes the "send" portion
of FopCommand processing:

The command is echoed via FdEVEventLogger. FoGnCmdFopFormatlF creates the appropriate
object to process the command directive: a FcGnProcessRtCmdReq object.

The Execute operation of this new FcGnProcessRtCmdReq object is invoked, which initiates the
building of a CCSDS Transfer Frame (via FcCmTcFrame).

The details for building the Transfer Frame are shown in Figure 3.3.4.9-2. The Transfer Frameis
composed of a CCSDS Packet, so this is first built (via FcCmTcPacketData and
FcCmTcPacketHeader). The Transfer Frame is completed by adding a header (via
FcCmTcFrameHeader) and calculating a CRC (via FcCmTcFrameCrc).

The completed transfer frame is then further processed into a CLTU (via FcCmTcCltu) which is
then added to the queue of commands sent, and forwarded to the TransmitCommand process (via

3-155 305-CD-045-001

FoGnCmdFopTransmitProxy).

The timer (used for detection of certain retransmission circumstances) is then set, and control is
returned to FcCmCcsdsFop in the Active state, thus completing the "send" portion of the
FopCommand processing, for the first command in this scenario.

A CLCW arrives, and FoGnCmdGroundStationlF handles it. The CLCW is archived via
FoDsFile, and FoGnProcessClcwReq routes it to FcCmFopActive for processing. The CLCW
indicates that no new frames are acknowledged onboard the spacecraft. Control is returned to
FcCmCcsdsFop in the Active state, thus completes processing of the first CLCW in this scenario.

FormatCommand process forwards the the second 1553-b command in to FopCommand. The
"send" portion of FopCommand processing for this command is identical to that for the first
command.

FormatCommand process forwards the the third 1553-b command in to FopCommand. Again, the
"send" portion of FopCommand processing for this command is also identical to that for the first
command.

A second CLCW arrives, and FoGnCmdGroundStationl F handlesit. The CLCW is archived via
FoDsFile, and FoGnProcessClcwReq routes it to FcCmFopActive for processing. The CLCW
indicates that the first command sent in this scenario was received onboard the spacecraft. The
CLTU isremoved from the queue of commands sent, and an uplink verification event message is
issued via FdEvVEventLogger. The FormatCommand process isinformed of the successful uplink
status of the command via FoGnCmdFopFormat!F, and control is returned to FcCmCcsdsFop in
the Active state, thus completes processing of the second CLCW in this scenario.

A third CLCW arrives, and FOGnCmdGroundStationlF handles it. The CLCW is archived via
FoDsFile, and FcCmProcessClcwReq routes it to FcCmFopActive for processing. The CLCW
indicates that both the second and third commands sent in this scenario were received onboard the
gpacecraft. The two CLTUs are removed from the queue of commands sent, and an uplink
verification event message is issued via FdEvEventLogger. The FormatCommand process is
informed of the successful uplink status of these commands via FoGnCmdFopFormatlF, and
control is returned to FcCmCcsdsFop in the Active state, thus completes processing of the third
(and last) CLCW in this scenario.

3-156 305-CD-045-001

Fobstie FoenCmdGroundStaion FoGTProcessClowReq Pt » o FcCmTcFrame FOGnCmdFopTransmitProxy FdEvEveniLogger
waiting for nput in the
Fop Active state
SH
notifed 15t fohmand arived
from meuudmmadﬂ process.
create request
e reuest 3y
f—process new commane—3
F—buid AD frame—3>1
build
[<€—#ame buil—{
f—ealculate CLT—3>1
add LT’rame to
emdsend que.
cLu
staft the timer
<€—sst command semt—{
waltihg for input in
Fop Attive state (S1)
notife :jcw anived
j€——erchive CLOW———__request proces;
Y
cLe
F——sprocess CLCW—3>1
0 e frame acked
notiied 20d command arrived
from FormptCommand process
<€—2nd command sent—{
notiied rd command arrived
from FornfatCommand process
<€—3rd command sem—{
notifiel CLCW arrived
J<€——archive CLCW——
request process
ciw >
Lo
f——sprocess CLOW—3>t
1t command
acked
remofe 1slcommana
fro send queue
command
notiigd CLCW arrived
J<€——archive CLCW——
request 1o
Brocess CLOW 1
{——srocess CLCW—31
pbocess CLOW
and 2nd[and jru cmd acked
removg acked cmds from
n
and
and 3rd o
—
aiting input in
Fop Active state
(s1)

Figure 3.3.4.9-1. FopCommand Transmission scenario

3-157

305-CD-045-001

84T-€

T00-G0-AD-S0E

FcCmFopActive

FeCmT

build type AD frame ——>{

<&—— frame is built ———

cFrame FcCmTcF

build frame data part ——=>f

rameData FcCmTcFrameHeader

build packet data part

FcCmTcFrameCrc

FcCmTcPacketData

build

<< packet data part is built
build packet header
<< done(
[<€&——— done (length) ———
build frame headef (data part length) ——— >
build
<&—— frame hgader is built
CRC >>
<< done

(data part length)

length)

FcCmTcPacketHeader

build

calculate

Figure 3.3.4.9-2. FopCommand: Building Transfer Frame

3.3.4.10 Real-Time Command FOP Command Retransmission Scenario

3.3.4.10.1 Real-Time Command FOP Command Retransmission Abstract

The purpose of the"Real-Time Command FOP Command Retransmission " scenario isto describe
the process by which the FOP (Frame Operation Procedure) software of the FopCommand process
performs a retransmission.

Figure 3.3.4.10-1 is the event trace diagram which correspond to this scenario.

3.3.4.10.2 Real-Time Command FOP Command Retransmission Summary Information
Interfaces:

Data Management Subsystem

EDOS

FormatCommand

TransmitCommand
Stimulus:

A CLCW isreceived from EDOS.
Desired Response:

CLTUs are retransmitted to the spacecraft.
Pre-Conditions:

FOP is in the "active" state, with three (3) commands in the queue of unconfirmed
commands.

Post-Conditions:

The FOP is in the "active" state, with no commands in the queue of unconfirmed
commands.

3.3.4.10.3 Scenario Description

The scenario begins with FopCommand waiting for input in the Active state. A CLCW arrives,
and FoGnCmdGroundStationlF handles it. The CLCW is archived via FoDsFile, and
FcCmProcessClcwReq routes it to FcCmFopActive for processing. The CLCW indicates that the
first command sent in the queue was received onboard the spacecraft. The CLTU isremoved from
the gqueue of commands sent, and an uplink verification event message is issued via
FdEvEventLogger. The FormatCommand process is informed of the successful uplink status of
the command via FoGnCmdFopFormatlF, and control isreturned to FcCmCcsdsFop in the Active
state.

A second CLCW arrives, and FoGnCmdGroundStationl F handlesit. The CLCW is archived via
FoDsFile, and FcCmProcessClcwReq routes it to FcCmFopActive for processing. The CLCW
indicates that retransmission of unconfirmed commands (CLTUS) isrequired. The two remaining
CLTUs in the queue are retransmitted via FOGnCmdFopTransmitProxy and the timer (used for
detection of certain retransmission circumstances) is then set, and control is returned to
FcCmCcsdsFop in the "Retransmit without wait" state.

A third CLCW arrives, and FoGnCmdGroundStationlF handles it. As before, the CLCW is

3-159 305-CD-045-001

archived via FoDsFile, and FoGnProcessClcwReq routes it to FcCmFopActive for processing.
The CLCW indicates that the first retransmitted command has been received by the spacecraft.
The CLTU isremoved from the queue of commands sent, and an uplink verification event message
is issued via FdEvEventLogger. The FormatCommand process is informed of the successful
uplink status of the command via FoGnCmdFopFormatlIF. Inasmuch asit has been confirmed that
the retransmission of the queue is at least partially successful, control is now returned to
FcCmCcsdsFop, in the Active state.

A fourth CLCW arrives, and FoGnCmdGroundStationl F handlesit. Again, the CLCW isarchived
viaFoDsFile, and FoGnProcessClcwReq routes it to FcCmFopActive for processing. The CLCW
indicates that the second retransmitted command has been received by the spacecraft. The CLTU
is removed from the queue of commands sent, and an uplink verification event message is issued
via FdEvVEventLogger. The FormatCommand process is informed of the successful uplink status
of the command via FoGnCmdFopFormatlF, and control is returned to FcCmCcsdsFop in the
Active state.

3-160 305-CD-045-001

FoGnCmdFormatiF

FoGnCmdFopTransmitProxy FdEvEventLogger

1st command

n Sned que(CLTU) 3>
Jon send que(CLTU) ————3>f

log Fop State change event mesg

—
clew indicates
1t refransmitted frame.

ceived

remoye the acked frame
from gfte and set transmit

terto 1

Fop state 0

FoDsFile FeCmCesdsFop "
F—
waifing for input n the
op Active state
i)
et
nolifibd CLCW arrived
f<e——archive cLew:
requestto
‘process CLOW ™3]
F——process CLOW ——3>
cL
=
CLEW indicates
1t received
=
rembve cmd from
15t command
—
coftinve waiting in
FoplAcive State (S1)
notifid CLCW arrived
f<€—archive CLCW »
request (o
process CLCW ™21
cL
f———process cLoW ——3>1
cw indicates
tran flag ON
—
increage transmit counter
wansmit 1st cmd
transmit 2nd com|
—
ref ir_«lhe timer
change state to
[Rimit without wait
—
wait input in
Fop Rptransmit ithou wait
State (52)
fe—t
notfled CLCW artived
f<&——archive cLew:
requestto 5
process CLCW ——process CLOW——3>{
L
statg to F
—
wai in Fop Active
state (S1)
—
notifiey CLCW arrived
f<€&——archive CLCW
request (o
processCLCW —— 21
——process cLoW ——3>
cL
=
LEW indicates
3rd cofmand received
received
—
cqntinue wait in
Fdp Active State
S(1)

Figure 3.3.4.10-1. FopCommand Retransmission scenario

3-161

305-CD-045-001

3.3.4.11FcCmCcsdsFop State Diagram Description:

The dynamic behavior of FcCmCcsdsFop object is best described by a state machine model. At a
given time FcCmCcsdsFop object isin one of its six well defined state. When an input arrives or
internal event happens, the object analyzes the consequence of these events, takes proper actions
and transitions to next state according to a set of per defined rules.

Once initialized, the controller can accept inputs from the following sources: " Transfer command
data' request from CommandFormat process (command data may be in the form of 1553B or
memory load packet), CLCWSs from EDOS, configuration change directives from RMS and
internal events which include all the possible exceptions, timeout, and change state request from
FcCmFopState.

After initialization the controller isin "Initial" state (S6). It waits for input from outside. In this
state, the controller can accept initialization and configuration related directives from RMS or
control command (set VR and unlock) from FormatCommand process. All other inputs are either
regjected and logged as error or ignored when they are not harmful to the system. When a
StartAdWithoutClcw directive recelved from RMS, the controller does necessary steps to
initialize the Fop protocol and transitionsto "Active" state. Normal commanding procedure starts.
When a StartAdWithClcwCheck directive received from RMS, the controller does necessary
steps to initialize the protocol and sets a timer before it transitions to "Initializing without BC
Frame" statewhereit waitsfor avalid CLCW to show up. When avalid CLCW has been received,
Fop protocol transitions to Fop Active state and normal commanding procedure starts. When a
SetVr (Set Recelver Frame Sequence number) command is received from FormatCommand
process, the controller builds atype BC frame which contains the new sequence number and sends
the corresponding CLTU to TransmitCommand process where it is uplinked. The controller then
transitionsto "Initializing with aBC Frame" state where it waits for the confirmation (by a CLCW
) of receipt of the current BC frame. Upon arrival of a CLCW which indicates the BC frame has
successfully onboard, the Fop protocol transitions to Fop Active state where normal commanding
procedure starts. When an exception occurs during the initialization process, Fop protocol
performs a shutdown and transitions to Fop initial state. When an Unlock command received from
FormatCommand process, the controller builds a type BC frame and sends the corresponding
CLTU to TransmitCommand process where it is uplinked. The controller then transitions to
"Initializing with aBC Frame" state where it waits for the confirmation (by a CLCW) of receipt of
the BC frame. Upon arrival of a CLCW which indicates the BC frame has successfully onboard,
the Fop protocol transitionsto Fop Active state where normal commanding procedure starts. When
an exception occurs during the process, Fop protocol performs a shutdown and transitions to Fop
initial state where it waits for further direction from the operator. When a TerminateAdService
directive received from RMS, the controller shutdown the AD service. In Fop initia state, the
controller also accepts configuration change requests from RMS. Configuration change requests
may include following directives. "Set Fop Sliding Window Size" directive, "Set Ground
Transmitter Sequence Number " directive, "Set Transmission Limit" directive and "Set Time
Initial Value" directive etc. When those directive are received while Fop isin Initia state, the
corresponding actions will be taken and status will be returned to RMS.

The controller is in the "Initializing without BC Frame" state (S4) after receiving a
StartAdWithClcw directive whilein the "Initial" (S6) state. A successful CLCW check will result
in a transmission to "Active" (S1) state where norma commanding procedure starts. When

3-162 305-CD-045-001

exceptions or timeout occurs, the controller performs proper shutdown function and transitions
back to "Initial" state where it waits for further directive from authority.

The controller isinthe "Initializing with BC Frame" state (S5) after receiving an Unlock command
or SetVr command while in the "Initial" state. A successful CLCW check will result in a
transmission to "Active" state (S1) where normal commanding procedure starts. When timeout
occurs while waiting for CLCWs and allowed retry is not exhausted, a retransmission is initiated.
When timeout occurs and allowed retry is exhausted, the controller performs a shutdown and
returnsto "Initial" state (S6) where it waits for further directive form the authority.

Active state (S1) isthe normal state of the protocol machine when there are no recent errors on the
link and no incidents have occurred leading to flow control problems. In the state, the controller
acceptsrequest to transfer command dataand CLCWs. Other directives are either flagged as errors
when they are not appropriate for the current state or ssmply ignored when they are not harmful to
the system. When a uplink command data request received from FormatCommand process, the
controller builds a type AD frame or BC frame depending on the passed command data type
according to the CCSDS standard. Once the frame is built, the controller builds the CLTU which
is sent to TransmitCommand process where it is uplinked. Before processing any new inputs, the
controller saves the current copy of AD or BC frame on the command sent queue. When a CLCW
arrives and indicates the current frame has received by the spacecraft, the controller deletes the
acknowledged frame from the command sent queue and send status to FormatCommand process.
In Fop Active state S(1), the controller also processes CLCWs. When a CLCW indicates several
frames have arrived on the spacecraft, the controller removes acknowledged commands from the
command sent queue. When CLCW arrives and with the retransmission flag on but wait flag off,
the controller initiates retransmission immediately and transitions to "Fop Retransmit Without
Wait State” §(2). When CLCW arrives and with both retransmission flag and wait flag on, the
controller transitionsto "Fop Retransmit With Wait State" S(3). When time out happens while Fop
isinitsActive state, if the allowed retry isnot exhausted, the controller initiates the retransmission,
if the allowed retry is exhausted, the controller performs a shutdown and transitions to Fop Initial
State and waits for further direction from the operator.

The controller will be in "Retransmit Without Wait" state (S2) if it receives a CLCW with its
retransmission flag on but wait flag off while in Fop Active state. When a CLCW arrives and
acknowledges some frames, but retransmission is still on and wait flag is still off, the controller
removes the acknowledged frames from the command sent queue and initiates another
retransmission. If a CLCW arrives with both retransmission flag and wait flag turned off, the
controller transitionsto Fop Active state S(1) after removal of the acknowledged frame. If aCLCW
arrives with its retransmission flag still on and also wait flag on, the controller transitions to " Fop
Retransmit With Wait" state S(3). When time out happenswhile Fop isin the "Retransmit Without
Wait" state, if allowed retry is not exhausted, another retransmissionisinitiated, if allowed retry is
exhausted, the controller performs a shutdown and transitionsto Fop Initial state where it waitsfor
further direction from the operator.

3-163 305-CD-045-001

The controller will be in "Retransmit With Wait" S(3), if it receives a CLCW with its
retransmission flag on and also wait flag on while in Fop Active state. When a CLCW arrives with
both retransmission and wait flag turned off, the controller transitions to Fop Active state after
removal of acknowledged frames from the command sent queue. If a CLCW arrives with its wait
flag still on, the controller will stay in this state. When aCLCW arriveswith itsretransmission flag
still on but wait flag off, the controller transitions to "Retransmit Without Wait " state,
retransmission starts there.

3-164 305-CD-045-001

Q9T-€

T00-G0-AD-S0E

Relransmit without wait (S2)

Initilize with BC Frame (S5) do :Shutdown

do - delete
copy of BC frame
‘cancel timer

do : iniiate.
BC relran etran countr > limit
smission

counter ++
ext/ set timer

acked frames

terminate AD
diregtive dorie

CLCW indicates
BC frame
received

LCW arrives
[some frame acked and
etran flag = OFF wait flag = O

clow arrive
some frame acked and
etfan flag = ON wait flag = OFF]

do: Shutdown

do - waiting for

BC frame receipt do - wait

ing for input CLCW arrives)

confirmation
cLew retran flag = ONfand ——
frame wait flag becomed OFF |
relran f
wait flag
Fop Inital (S6)
Fop Active (S1)
e SetV(S) = V(R)
o initalze INR = V(R)
transmit BC frame o initalize
of type set V(R)
et set tmer exit/ set tmer Changestate
do’ initate
counter ++
infiate AD service initate AD service initate AD service
i ok i set V(R wihout cew check ime out it v g S O
rectve excepions imi \ and wailflag is OFF]
o' setFopVariables Y 1
set fop variables, do - watting for inputs
(variabie) Go - waling for mputs do - Shutdown B s
done:
time out
] T counter > mit | \
CLOW indicates
initate AD service
’ acked T T
with clow check exceptions 15538 command CLCW arrives
o - remove done’ memory load packef {retran flag = ON && wat flag
acked rame
from sent queue
o ialize do' cancel tmer "Go - buld packet
do’ buidFrame acked frames
o - xmit
done et/ set tmer
Change State
do- access,
Initalzing without BC Frame (S4) LCW an Retransmit with wat (S3)
[nd frame cow
do' waiting for CLCW o Shutdown fs e i o' waiting for input { retran flag = ON and
wait flag becomes ON |
exceptions.
ignore
-, O arrives
connected o arive [some frame acked and
time out [ame relran flag ON and
retran flag s OFF it 180 ON
ocgetows watflag is OFF |
name server and
valid CLCW arrives U terminate?™¢,
o fime out AD girective
i acked frames
o’ contact
o comfim acked frames
ancel tmer RS
MS configuration info arrive: rt (RMS address)
/o shutdown

Figure 3.3.4.11-1. FcCmCcsdsFop state diagram

3.3.5 FopCommand Data Dictionary

FcCmCcsdsFop
cl ass FcCnCcsdsFop

This classisthe controller of the FopCommand process. It establishes connections with other subsystems and command tasks
when initialized. It then starts the main event loop. When input arrives from outside, FcCmCcsdsFop interprets the message
and delegates the specific request to FcCmFopState. The request is processed by the current active state.

Public Functions

EcTVoi d ChangeRol e(Rol eType nyRol e)

This member function sets attribute myRole to the passed type (Primary, Backup or Inactive). it also calls
FcCmFopState::ChangeRol e to set the corresponding flag there.

EcTVoi d ChangeSt at e(FcCnfopSt at e*)
When asked by FcCmFopState class, this member function sets myCurState pointer to next state.
EcTVoi d Configurati on(RACStri ng myConfi gl nfo)
This member function does all the necessary configuration stuff using information from the configuration file.
EcTVoi d Get Confi gSnapshot ()
This member function delegates the get configuration snapshot request to my current state.
EcTint Init(EcTInt argc, EcTChar** argv)

Thisroutineinitializes all the interfaces. It first initiates connection with RM S with passed arguments. Once connected,
it waitsfor configuration information from RMS. When configuration file nameisreceived, it accesses the configuration
file via FoDsFile class. It then proceeds to config the controller with info from the file.

EcTVoi d ProcessC cw EcTUShort | nt, EcTBool ean, EcTBool ean, EcTBool ean)

This member function delegates process CLCW request to my FcCmFopState class. How this request is processed
depends on current active state of the FcCmFopState class.

EcTVoi d ProcessLoadPacket (RACol | ect abl e nmyPacket)

This member function delegates process a memory load packet request to my current active state. How this request is
processed depends on which state is currently active.

EcTVoi d ProcessRt Cnd(RWCol | ect abl e nyRt Cnd)
This member function delegates process areal time
conmand request
to my current active state. How this request is processed depends on which stateis currently active.
EcTVoi d ResuneAdServi ce()

This member function delegates the "Resume AD Service" request to FcCmFopState class. How thisrequest is processed
depends on current active state.

EcTVoi d Run()

This routine starts the main event loop of Fop process. It block waits on all system interfaces. When an input arrives at

any of these interfaces, the main event loop will be notified. It will direct the interface to handle the input message. The
interface, depending on the context of input, returns an instance of an FoFopRequest object. The FoFopRequest object

knows how to ask the controller to perform a specific action.

EcTVoid Sel ectCti u(EcTUI nt)
This member function delegate the select ctiu request to my current state

EcTVoi d Set Retransm ssionLimt(EcTU nt nyLimt)
This member function delegates " Set Fop Retransmission Limit" request to my current active state.

3-166 305-CD-045-001

EcTVoi d Set Ti neout Type(EcTBool ean nyTi neout Type)

This member function delegates " Set Timeout Type" request to my current active state.
EcTVoid SetTinerlnitial Val (EcTULongl nt nyT1Val)

This member function delegates "set timer initial value" request to my current active state.
EcTVoi d Set Vs(EcTU nt myNewvs)

This member function delegates the "set Transmitter Frame Sequence Number" request to FcCmFopState. The request is
processed by current active state.

EcTVoi d Set WnW dt h(ECTUI nt nmyW nW dt h)

This member function delegates the " Set Fop Sliding Window Width" request to my current active state.
EcTVoi d Shut downFop()

This member function sets myFoplnEffect flag to FALSE;
EcTVoi d Start AdWt hC cwCheck()

This member function delegates RMS "Init AD Service with a CLCW check" request to my FcCmFopState class. How
this request will be processed depends on my current active state.

EcTVoi d Start AWt hout G cwCheck()

This member function delegates "init AD service without CLCW check" request to my FcCmFopState class. How this
reguest will be processed depends on which state is currently active.

EcTVoi d Start Fop()
This member function sets myFoplnEffect flag to TRUE.

EcTVoi d Ter ni nat eAdSer vi ce()

This routine delegates the terminate AD service request to FcCmFopState. The request will be processed by the current
active state.

Private Data

enum nmyAr chi veSt at e
RWCString myConfigFile
This attribute identifies my configuration file name.
FcCnfopSt at e* myCur St at e
This attributes identifies current Fop active state.
EcTU nt nyDbld
This attribute identifies my data base ID.
FdEvEvent Logger* nyEvent Log
Thisis my pointer to my event log handler FdEVEventL ogger class.
EcTBool ean nyFopl nEf f ect
This attribute identifies if Fop protocol is running.
FoGhCndFopFor mat | F* nyl f ToCrdFor mat
Thisis my pointer to FoGnCmdFopFormat!F class.
FoGnCmdFopGr oundSt ati onl F* nyl f ToG oundSt ati on
Thisis my pointer to FoGnCmdFopGroundStationl F class.

FoGhCndFopRnsl F* nyl f ToRns
Thisis my pointer to FoGnCmdFopRmsIF class.

3-167 305-CD-045-001

enum myRol e

EcTU nt nyScld
This attribute identifies the spacecraft I1D.

Private Types
enum
This attribute identifies my archive state.

Enumerators

OFF
ON

enum
This attribute identifies current string is real-time or a simulation.
Enumerators

Real Ti me
Si mul ation

enum
This attribute identifies current string is primary, backup or Inactive.
Enumerators

Backup
I nactive
Primary

FcCmFopActive
cl ass FcCnfFopActi ve

This classis a subclass of FcCmFopState. It implements the Fop active state specific behavior.

Base Classes
public FcCnfFopState

Public Functions

EcTVoi d Handl eTi meout ()
When timeout happens while | am in this state, the member function will be called.

EcTVoi d ProcessC cw EcTUShort | nt, EcTBool ean, EcTBool ean, EcTBool ean)
This member function processes the incoming CLCWSs.

EcTVoi d ProcessLoadPacket (RACol | ect abl e nmyPacket)

This member function defines the behavior of how Fop protocol processes a "transmit a memory load packet" request
while Fop isin its active state.

EcTVoi d ProcessRt cnd(RWCol | ect abl e nmyRt Cnd)

Thismember function defines the behavior of how Fop protocol processesa"transmit areal timecommand" request while
the protocol isinits active state.

FcCmFoplnitial
cl ass FcCnfFoplnitial

Thisisasubclass of FcCmFopState class. It implements the Fop Initial state specific behavior.

3-168 305-CD-045-001

Base Classes

public FcCnfFopState

Public Functions
EcTVoi d Handl eTi meout ()
When timeout happens while Fop isin Initial (S6) state, this function will be called.
EcTVoi d ProcessC cw EcTUShort | nt EcTBool ean, EcTBool ean, EcTBool ean)
This member function processes CLCWswhile Fop ininitial state.
EcTVoi d ProcessLoadPacket (RACol | ect abl e nmyPacket)

This member function defines the behavior of how the Fop protocol processesa"transmit a memory load packet" request
while Fopisinitsinitial state.

EcTVoi d ProcessRt Crd(RWCol | ect abl e nmyRt Cnd)

Thismember function definesthe behavior of how Fop protocol processesatransmit a real time command" request while
Fopisininitia state.

EcTVoi d ResuneAdServi ce()

This member function processes "Resume AD service" directive from RMS. It sets Fop current state to previously
suspended state.

EcTVoi d Set Vs(EcTU nt myNewvs)

This member function processes " Set transmitter sequence number” request from RMS. It sets myV s attribute to a passed
value.

EcTVoi d Start AdWt hC cwCheck()

This member function processes "Initial AD service with a CLCW check” request while Fop isin Initial State. It startsa
timer and wait for avalid CLCW to show up.

EcTVoi d Start AWt hout G cwCheck()

This member function processes "Init AD service without clcw check” directive from RMS. It sets Fop protocol to its
active state and command procedure beginsimmediately.

FcCmFoplnitializeWithBc

cl ass FcCnfFoplnitializeWthBc
This classis a subclass of FcCmFopState. It implements the "Fop Initializing With BC frame" state specific behavior.

Base Classes
public FcCnfFopState

Public Functions
EcTVoi d Handl eTi meout ()
When timeout happens while | am in this state, this member function will be called.

EcTVoi d ProcessC cw(EcTUShort EcTBool ean, EcTBool ean, EcTBool ean)

Thismember function defines the behavior of how Fop protocol processesa CLCW whileitisinits"Fop Initializing With
BC frame" state.

EcTVoi d ProcessLoadPacket (RACol | ect abl e nmyPacket)

This member function defines the behavior of how Fop protocol processes a “transmit amemory load packet" request
whileitisinits"Fop Initiaizing With BC Frame" state.

EcTVoi d ProcessRt Cnd(RWCol | ect abl e nyRt Cnd)

Thismember function definesthe behavior of how Fop protocol processesa "transmit areal time command” request while
the fop protocol isin the "Fop Initializing With BC Frame" state.

3-169 305-CD-045-001

FcCmFoplnitializeWithoutBc

cl ass FcCnfoplnitializeWthoutBc
This classis a subclass of FcCmFopState. It implements the " Fop Initializing Without BC frame" state specific behavior.

Base Classes
public FcCnfFopState

Public Functions
EcTVoi d Handl eTi meout ()
When timeout happens while | am in this state, this member function will be called.
EcTVoi d ProcessC cw EcTUShort EcTBool ean, EcTBool ean, EcTBool ean)
This member function processes a CLCW while Fop protocol isin "Fop Initializing Without BC frame" state.

EcTVoi d ProcesslLoadPacket (RACol | ect abl e nmyPacket)

This member function defines the behavior of how Fop protocol processes a "transmit a memory load packet" request
whileitisinits"Initializing Without BC Frame" state.

EcTVoi d ProcessRt Cnd(RWCol | ect abl e nmyRt Cnd)

This member function defines the behavior of how Fop protocol processes "transmit areal time command" request while
itisinits"Initializing Without BC frame" state.

FcCmFopRxmitWithWait
cl ass FcCnFopRxmi t Wt hWai t

This classis a subclass of FcCmFopState. It implements "Fop Retransmit with Wait" state specific behavior.

Base Classes
public FcCnfFopState

Public Functions
EcTVoi d Handl eTi meout ()
When timeout happens while fop protocol isin the "Fop Retransmit with Wait" state, this member function will be called.
EcTVoi d ProcessC cw EcTUShort | nt, EcTBool ean, EcTBool ean, EcTBool ean)
This member function processes incoming CLCWs while the fop protocol isin the "Fop Retransmit with Wait" state.

EcTVoi d ProcessLoadPacket (RACol | ect abl e myPacket)

This member function defines the behavior of how the Fop protocol processesa'transmit amemory load packet" request
while Fopisin its"Retransmit with Wait" state. This function builds the load packet into a CCSDS frame format and put
the frame on the wait queue.

EcTVoi d ProcessRt Cnd(RWCol | ect abl e nyRt cnd)

This member function defines the behavior of how the Fop protocol processes a"transmit areal time command" request
while the protocol isin its Retransmission with Wait state. Because Fop is in Retransmit with Wait state, this function
builds the new command into CCSDS frame format and putsit on the wait queue.

FcCmFopRxmitWithoutWait
cl ass FcCnfFopRxm t Wt hout Wi t

This classis a subclass of FcCmFopState. It implements the "Fop Retransmit without Wait" state specific behavior.

3-170 305-CD-045-001

Base Classes
public FcCnfFopState

Public Functions
EcTVoi d Handl eTi meout ()
When timeout happens while the protocol isin the "Fop Retransmit without Wait", this member function will be called.
EcTVoi d ProcessC cw EcTUShort | nt EcTBool ean, EcTBool ean, EcTBool ean)
This member function processes CLCWs while the Fop protocol isin the "Fop Retransmit Without Wait" state.
EcTVoi d ProcessLoadPacket (RACol | ect abl e nmyPacket)

This member function defines the behavior of how the Fop protocol processes a"transmit amemory load packet" request
while the protocol isin its " Retransmission without Wait" state.

EcTVoi d ProcessRt Crd(RWCol | ect abl e nmyRt Cnd)

This member function defines the behavior of how the Fop protocol processes a"transmit real time command” request
while the Fop isin its "Retransmission without Wait" state.

FcCmFopState
cl ass FcCnfFopSt at e

FcCmFopState represents the state of Fop protocol. It has six derived classes with each of them representing a different
operational Fop state. FcCmFopState class defines common interface for its six subclasses. It aso defines common behavior
of the subsequently derived states. When FcCmFopState receives a request from FcCmCcsdsFop, it responds differently
depending on its current state.

Public Functions
EcTVoi d AddFranmeToSendQue()
This member function adds frame to myCmdSendQue before sends the corresponding cltu to command transmit process.

FcGnTcd tu Buil dFrane(RWCol | ect abl e nyCndDat a)

This member function asks FcCmTcFrame class to build a 1553B command or a memory load packet into Type-AD or
Type-BC frame according to the CCSDS standard. It calls FcCmTcFrame::BuildFrame to actually build the frame.
FcCmTcFrame::BuildFrame is overloaded, therefor, with the passed argument properly casted, it knows to handle a
command in 1553B format or amemory |oad packet differently. This member function returnsan instance of FcGnTcCltu.

EcTVoi d ChangeRol e(Rol eType nyRol e)
This routine sets myRole to the passed value.
EcTI nt Confi g(RWset nyPar anet er Set)
This member function gets the passed configuration parameter set and does configuration.
RWCSt ri ng Get Confi gSnapshot ()
This routine saves my configuration parametersin a configuration file and notify RMS about the file.
virtual EcTVoi d Handl eTi neout ()
Thisisavirtual function. It provides common interface for all subsequently derived classes.
EcTVoi d I gnore()
Sometimes, it is not necessary to process the request that I've received. This method handles this kind of situation.

EcTlint Init(FcCnCcsdsFop* nyFop, FoCdFopFor mat Proxy* nyFor mat Proxy,
FoGhCndFopRnsl F* nyPtr ToRms, FdEvEvent Logger* nyEvent Log)

Initialize the fop states and interface pointers.

EcTVoid InitiateAdRetran()
this member function prepares for AD or BC frame retransmission.

3171 305-CD-045-001

EcTVoid InitiateFraneTransmt()
InitiateFrameTransmit()

This member function initiates the transmission of the first frame on the command send queue that hasits To Be
Retransmitted flag on. If no frames are needed to be retransmitted, this member function initiates the transmission of a
new frame.

virtual EcTVoid Processd cw EcTUShortlInt, EcTBool ean, EcTBool ean,
EcTBool ean)

Thisisavirtual function. It provides common interface for all the subsequently derived classes.

virtual EcTVoid ProcesslLoadPacket (RWCol | ect abl e nyPacket)

Thisisavirtual function. It provides default behavior for how FcCmFopState processes amemory load packet. If
subsequent derived class wants to process aload packet differently, it should provides its own version of
ProcessL oadPacket function.

virtual EcTVoid ProcessRt Cmd(RACol | ect abl e nmyRt Cnd)

Thisisavirtual function. It provides default behavior for how FcCmFopState processes areal time command. If
subsequent derived class wants to process a command differently, it should provide its own version of ProcessRtCmd
function.

EcTVoi d RenoveAckedFrane()
This member function removes acked frames from command send queue.

virtual EcTVoid ResuneAdService()

Thisisavirtual function. It provides the default behavior for how the FcCmFopState handles the "Resume AD service"
request. The derived class FcCmFoplnitial will override this function.

EcTVoid SelectCtiu(EcTU nt myCtiu)
This member function sets my attribute myCtiu.
EcTl nt Set Ti meHandl er ()
This member function sets atime out handler.
EcTVoi d Set Ti neout Type(EcTBool ean nyTi nmeout Type)
This member function sets Fop's Timeout Type variable to a passed value.
EcTVoi d SetTimerlnitial Val (EcTULongl nt nyT1Val)
This member function sets Fop's T1 value to a passed number
EcTVoi d Set Transni ssionLimit(EcTU nt myLimt)
This member function sets Fop's Transmission limit variable to a passed number.

virtual EcTVoid SetVs(EcTU nt myNewVs)

Thisisavirtua function. It provides the default behavior for how the FcCmFopState handles the "set transmitter frame
sequence number” request. The derived class FcCmFoplnitial will override this function

EcTVoi d Set WnW dt h(ECTUI nt nmyW nW dt h)

This member function sets Fop Sliding Window Width to a passed value.
EcTVoi d Shut down()

Thisroutineis responsible for gracefully shutting down FOP whenever needed.

virtual EcTVoid Start AdWthC cwCheck()

Thisisavirtual function. It provides default behavior for how FcCmFopState processes a"Start AD Service With a
CLCW check" request. The derived class FcCmFoplnitial will override this function.

virtual EcTVoid Start AWt hout O cwCheck()

Thisisavirtua function. It provides the default behavior for how the FcCmFopState handles the
StartAdWithoutClcwCheck request. The derived class FcCmFoplnitial should override this function.

3-172 305-CD-045-001

EcTVoid StartTi ner()

This member function starts system timer.
EcTVoi d St opTi mer ()

This member function stops system timer.
EcTVoi d Ter ni nat eAdSer vi ce()

Thisroutine terminates AD service gracefully and informs all the related parties about the termination.

EcTVoid Transm t Frame(FcGnTcO tu nmyd tu)
This member function does preparation for transmission, and sends a copy of cltu to command transmit task viaits proxy.

Private Data

RW i st Col | ect abl esQueue nmyCndSent Que
This attribute contains all the transfer frames that have been uplinked but not CLCW verified.

RW i st Col | ect abl esQueue nmyCrdWai t Que
This attribute contains one command that will be processed next.

enum myCtiu
FcCmlcFrame myCur Frame
This attribute identifies the current copy of type AD or BC frame.

FdEvEvent Logger* nyEvent Log
This attribute is my pointer to Event log class FAEVEventL ogger.

EcTUShort | nt nyExpect edAckSeqNo

This attribute identifies the Expected Acknowledgment Frame Sequence Number, NN(R). The NN(R) containsthe value
of N(R) from the previous CLCW. NN(R) -1 is the value of the sequence number of thelatest Type-AD frame which Fop
can guarantee has arrived safely.

FcCnCcsdsFop* nyFop
Thisis my pointer to FcCmFopCcsdsFop class.

FcCdFopFor ant Pr oxy* myFor mat Pr oxy
This attribute identifies my pointer to Command Format task.

EcTUShort | nt nyFranmeSegNo
This attribute identifies my frame sequence number.

FoPsd i ent| F* myPar aServer Pr oxy
Thisis my pointer to parameter server.

FoGhCndFopRnsl F* nmy Pt r ToRms
This attribute is my pointer to RM S subsystem.

enum nyRol e

enum ny St or edLockout Fl ag
enum ny St or edRet r anFl ag
enum nmy St or edWai t Fl ag

EcTU nt nySuspendSt at e
This attribute identifies Fop suspend state.

EcTBool ean nyTi meout Type
This attribute the Fop Timeout Action, i.e. when timeout happens, what action Fop will take.

3-173 305-CD-045-001

EcTULongl nt nyTimerlnitial Val
this attribute identifies the timeout period.
enum nyToBeRet r anFl ag
EcTU nt myTransnit Count er
This attribute identifies how many time a frame has been transmitted.
EcTU nt nyTransm tLimt
This attribute identifies how many time Fop can retry.
FcCmCndFopTr ansmi t Proxy* nyTransmi t Proxy
This attribute identifies my pointer to Command Transmit task.
EcTU nt nyVs
This attribute identifies grounder transmitter sequence number.

EcTU nt nyW nW dt h
This attribute identifies Fop Sliding Window Width.

Private Types

enum
This attribute identifies which CTIU identifier to use when build the Frames.

Enumerators

Backup
Primary

enum
This attribute identifies the current process is a backup, primary or Inactive.

Enumerators

Backup
I nactive
Primry

enum
This attribute identifies the a frame on the command send queue that must be retransmitted.

Enumerators

OFF
ON

enum
This attribute contains the value of the "Retransmit" flag from the previous CLCW.

Enumerators

OFF
ON

enum
This attribute contains the value of the "Wait" flag from the previous CLCW.

3-174 305-CD-045-001

Enumerators

OFF
ON

enum
This attribute identifies the value of the "Lockout" flag from the previous CLCW.

Enumerators

OFF
ON

FcCmTcFrame

cl ass FcCnilcFr ane
Thisclassis responsible for building transfer frame according to the CCSDS format.

Public Functions

FcCnircCl tu Buil dd tu()
This member function calcul ates the cltu for the entire transfer frame. It creates an instance of FcCmTcCltu class.

EcTl nt Bui |l dFr ane(FcGhFopPacket Msg nmyPacket)

This member function builds a memory load packet (in CCSDS packet format) into CCSDS frame format.
EcTl nt Bui | dFr ane(FcGhFopCndMsg nyRt Cnd)

This member function builds areal time command (in 1553B format) into the CCSDS frame format;

EcTVoi d Set Upl i nkSt at us(EcTBool ean)
This member function sets myUplinkstatus attribute.

Private Data

EcTUChar* nyd tu
This attribute identifies my cltu.

FcCmicFrameCrc* nyCrcPtr
Thisis my pointer to FcCmFrameCrc class.

EcTUChar * nyFrane
Thisisthe pointer to my transfer frame.

EcTUShort I nt nyFrameSeqNo
This attribute identifies the current frame sequence number.

enum nyFranmeType

FcCmlIcFr aneHeader * nyHeader Ptr
Thisis my pointer to FcCmTcFrameHeader class.

FcCnilfcFr amePacket * myPacket Pt r
Thisismy pointer to FcCmTcFramePacket class.

enum nyToBeRetransmi tt edFl ag
enum nyUpl i nkSt at us

Private Types

enum
This attribute identifies my transfer frame type.

3-175 305-CD-045-001

Enumerators

AD
BC

enum
This attribute identifies up link status of my frame.

Enumerators

bad
good

enum
This attribute identifies if my frame need to be retransmitted.

Enumerators

of f
on

FcCmTcFrameCrc
cl ass FcCnilcFr ameCrc

This classis responsible for calculating CRC code for frame.

Public Functions

EcTl nt Buil d(EcTUChar *)
This member function calculates CRC code for frame.

EcTVoi d Bui |l dCrcTabl e()
This member function builds CRC table.

Private Data

EcTU nt nyCrcPol y
This attribute identifies CRC generating poly.

EcTU nt* nyCrcTabl e
This attribute identifies crctable.

EcTU nt nyCrcVal
This attribute identifies final CRC value

EcTUchar* nyFrame
This attribute identifies the TC frame.

FcCmTcFrameHeader

cl ass FcCmicFr aneHeader
Thisclassis responsible for building frame header.

Public Functions

EcTI nt Buil d(EcTUChar *)
This member function builds the header

EcTU nt GetBits(EcTU nt, EcTUI nt)
This member function gets number of bits from a given starting position.

3-176 305-CD-045-001

EcTVoid SetBits(EcTU nt, EcTU nt)
This member function sets number of bits from a given starting position.

Private Data

EcTUChar* nyBufferPtr

This attribute identifies the buffer pointer,
enum nyBypassFl ag
enum nmyCont r ol CrdFl ag
EcTU nt nyCtiuldentifier

This attribute identifies my ctiu
EcTU nt nyLength

This attribute identifies my header length.
EcTU nt nyCOF f Set

This attribute identifies my offset in my frame.
EcTU nt nyScld

This attribute identifies my space craft Id.
EcTUShort I nt nySequenceNo

This attribute identifies the current frame sequence number.
EcTU nt nyVer si onNo

This attribute defines the version number of the TC frame.
EcTU nt nyVirtual Channel | d

This attribute identifies virtual channel.

Private Types

enum

This attribute defines control command flag.

Enumerators

OFF
ON

enum
This attribute defines myBypassFlag which controls the application of "Frame Acceptance Checks'.

Enumerators

COFF
ON

FcCmTcFramePacket

cl ass FcCnmilcFr amePacket
Thisclassis responsible for building frame data part.

Public Functions

EcTl nt Buil d(EcTUChar *)
This member function builds frame data part.

3-177 305-CD-045-001

Private Data
FcCnirfcPacl et Dat a* nyDat aPtr
Thisis my pointer to FcCmTcPacketData class.
EcTU nt nyLength
This attribute identifies my frame data length.
EcTU nt myO f set

This attribute identifies my data part offset from frame header.

FcCnircPacket Header * nyPacket HdPt r
Thisis my pointer to FcCmPacketHeader class.

EcTUChar * nyPacket Ptr
This attribute identifies my packet.

FcCmTcPacketData

cl ass FcCnlcPacket Dat a
Thisclassis responsible for building the packet data part.

Public Functions

EcTI nt Buil d(EcTUChar *)
This member function builds packet data part,

Private Data
EcTUChar* myBufferPtr
this attribute identifies the buffer pointer.
EcTU nt nyLength
This attribute identifies the length of my packet.
EcTU nt nyOFf set

This attribute identifies the offset from my packet header.

FcCmTcPacketHeader

cl ass FcCnlcPacket Header
Thisclassis responsible for building packet header.

Public Functions

EcTI nt Buil d(EcTUChar *)
This member function builds packet header.

EcTU nt GetBits(EcTU nt, EcTUI nt)

This member function gets given umber of bits from a given starting point.

EcTVoid SetBits(EcTU nt, EcTUI nt)
This member function sets given number of bits from
a given starting point.
Private Data

EcTU nt nyApid
This attribute identifies application process identifier.

3-178

305-CD-045-001

EcTUChar* myBufferPtr
This attribute identifies my buffer pointer.

EcTU nt nyLength
This attribute identifies my packet length.

EcTU nt nyOFf set
This attribute identifies packet offset in the frame.

EcTUShort | nt nyPacket SeqNo
This attribute identifies packet sequence no.

EcTU nt nyPacket Type
This attribute identifies my packet type.

EcTU nt nySecondar yHeader Fl ag
This attribute identifies Secondary Header flag

EcTU nt mySequenceFl ag
This attribute identifies sequence flag

EcTU nt nyVer si onNo
This attribute identifies version member of a packet.

FcGnFormatProcessReq
cl ass FcGnFor mat ProcessReq

This class provides a common interface for al the requests from FormatCommand subsystem.
Base Classes

publi ¢ FoFopRequest

Public Functions

virtual EcTlInt Execute(FcCntCcsdsFop* fop)
This member function provides a common interface for all requests and will be overridden by sub class method.

FcGnProcessLoadPacketReq

cl ass FcGnProcessLoadPacket Req

This class defines a binding between "process |oad packet” request of FormatCommand process and the ProcessL oadPacket
operation of the controller.

Base Classes

publ i ¢ FcGnFor mat ProcessReq

Public Functions
EcTl nt Execut e(FcCntCcsdsFop* fop)
This member function invokes the ProcessL oadPacket function of the controller.
Private Data

RWCol | ect abl e myPacket
This attribute identifies the load packet sent by FormatCommand process.

3-179 305-CD-045-001

FcGnProcessRtCmdReq
cl ass FcGnProcessRt CndReq

Thisclass definesabinding between " Processreal time command" request of FormatCommand process and the ProcessRtCmd
operation of the controller class.

Base Classes

publ i c FcGnFor mat ProcessReq

Public Functions
EcTl nt Execut e(FcCntCcsdsFop* fop)
This member function invokes ProcessRtCmd function of the controller class.
Private Data

RWCol | ect abl e nyRt Cnd
This attribute identifies the real time command sent by FormatCommand process.

FoCmCCSDSFopProxy
cl ass FoCnCCSDSFopPr oxy

This classisaproxy class that FopCommand process provides for FormatCommand process. FormatCommand process sends
real time commands and memory load packets to FopCommand class via this class.

Public Functions

EcTBool ean ProcessLoadPacket (EcTUChar*, EcTInt, FcTCdLoadStage, RWCStri ng)
This member function asks FopCommand process to process a memory |oad packet.

EcTBool ean ProcessRt Crd(EcTUChar*, EcTl nt, EcTBool ean)
This member function asks FopCommand process to process a real time command.

FoFopRequest

cl ass FoFopRequest

The class FoFopRequest is an abstract class, it is not intended to be instantiated. It provides acommon interface for all
subsequently derived classes.

Public Functions

virtual EcTInt Execute(FcCntCcsdsFop* fop)
This member function provides interface and will be overridden by sub class member function.

FoGnChangeRoleReq

cl ass FoGhChangeRol eReq

This class defines a binding between "change operational state” request of RM S and the ChangeRol e function of the controller
class.

Base Classes
publ i ¢ FoGhRmsReq

Public Functions

EcTl nt Execut e(FcCnCcsdsFop* fop)
This member function invokes ChangeRole function of controller.

3-180 305-CD-045-001

Private Data

Rol eType nyRol e
This attribute identifiesif the current string isin Primary, Backup or Inactive state.

FoGnCmdFopFormatlF

cl ass FoGhCrdFopFor mat | F
FoGnCmdFormat! F
This class facilitates the exchange of information between command Fop process and command format process

Public Functions

RWCol | ect abl e* Handl el nput ()

Thisroutine reads message from input stream. Depends on the context of theinput, It creates an instance of ProcessRtCmd
object or an instance of ProcessL oadPacket object, each object knows how to invoke certain actions of the controller.

EcTint InitFormatlf(RACString nyFormat Addr ess)
This member function initializes Fop's interface to command format process.

Private Data
FdEvEvent Logger* nyEvent Log
This attributes points to my event handle class FAEvEventL ogger.
RWCSt ri ng nyFor mat Addr ess
This attribute identifies the command format process address.

EcTl nt nyLi stenPort
This attribute identifies my listening port.

FoGnCmdFopGroundStationlF
cl ass FoGhCndFopG oundSt ati onl F

This class facilitates the exchange of information between command fop process and the ground station.

Public Functions

RWCol | ect abl e* Handl el nput ()

Thisroutine reads message from input stream. It returns an instance of FoGnProcessClcwReq which knows how to invoke
process clew function of the controller.

EcTInt I nitGoundStai onl F(RACStri ng)
EcTlint SetNotifier()

InitGroundStationl F
This member function initializes Fop's interface to ground station
Private Data
FdEvEvent Logger* nyEvent Log
This attribute points to my event handle class FdEvEventL ogger.

RWCStri ng nyGroundSt ati onadd
This attribute identifies my ground station address.

3-181 305-CD-045-001

FoGnCmdFopRmsIF
cl ass FoGhCndFopRmsl F

this class facilitates the exchanges of information between command fop process and RM S subsystem.

Public Functions

RWCol | ect abl e* Handl el nput ()

Thisroutine reads message from input stream. Depends on the context of theinput, it returnsan instance of FoFopRequest
which will have intelligence to ask the controller to perform certain actions.

EcTint Init(EcTInt argc, EcTChar** argv)

Thisroutineinitializes Fop'sinterface to RMS subsystem. It establishes the connection and registers the connection in an
event notifier.

EcTVoi d SendSt at us(RWCSt ri ng)
This member function sends status back to RM S subsystem.

Private Data
FdEvEvent Logger* mnyEvent Log
this attribute gives this class the visibility to FdEvEventLogger Class

RWCSt ri ng nyRrsAddr ess
this attribute identifies the address of the RM S subsystem.

FoGnCmdFopRmsProxy

cl ass FoGhCndFopRmsPr oxy
Thisclassisaproxy that FopCommand providesfor RMS subsystem. RM S sends configuration related directivesviathisclass.

Public Functions

EcTVoi d ChangeRol e(Rol eType nyRol e)

This member function asks FopCommand process to change its operational state. (the state isidentified asrolein
FopCommand process, the role can be Primary, Backup or Inactive);

EcTVoi d Confi gFopComuand(RACSt ri ng nyConfi gMsQ)
This member function sends process configuration information to FopCommand process.
EcTVoi d Get Confi gSnapshot ()
This member function asks FopCommand process to take a snap shot.
EcTVoi d ResuneAd()
This member function asks FopCommand process to resume its AD service.
EcTVoid SelectCtiu(EcTU nt myCtiu)
This member function asks FopCommand process to set its CTIU to the passed value.
EcTVoid SetTinelnitial Val (EcTULongl nt nyT1Val)
This member function asks the FopCommand process to set its T1 initial value to the passed value.

EcTVoi d Set Ti neout Type(EcTBool ean nyTi nmeout Type)

This member function asks the FopCommand process to set its timeout type value which specifies what action to take if
timeout happens.

EcTVoi d Set Transmi ssionLinmt(EcTU nt myLimit)
This member function asks the FopCommand process to set its transmission limit to the passed value.

3-182 305-CD-045-001

EcTVoid SetVs(EcTU nt nyVs)
Thismember function asks FopCommand processto set its ground transmitter frame sequence number to the passed value.

EcTVoi d Set WnW dt h(EcTUI nt nmyW nW dt h)
This member function asks the FopCommand process to set its diding window width to the passed value.

EcTVoi d Shut downFop()
This member function asks the FopCommand process to shut down itself.

EcTVoi d Start AdWt hC cwCheck()
This member function asks FopCommand process to start AD service with a CLCW check.

EcTVoid Start AdWt hout C cw()
This member function asks FopCommand process to start AD service without a CLCW check.

EcTVoi d Term nat eAd()
This member function asks FopCommand process to terminate its AD service.

FoGnCmdFopTransmitProxy
cl ass FoGhCndFopTr ansmi t Proxy
This class facilitates the exchange information between FopCommand process and TransmitCommand process.

Public Functions

EcTBool ean Sendd tu(FcGnTcO tu nydtu)
This member function will send cltu object to TransmitCommand process where the command will be uplinked.

FoGnGetConfigSnapshotReq

cl ass FoGnGet Confi gSnapshot Req

This class defines a binding between RM S "Get Configuration snapshot” request and the GetConfigSnapshot operation of
FcCmCcsdsFop class.

Base Classes

public FoGhRnsReq

Public Functions

EcTl nt Execut e(FcCmCcsdsFop* fop)
This member function invokes the GetConfigSnapshot operation of FcCmCcsdsFop class.

Private Data

RWCSt ri ng nyFi | eNane
This attribute identifies the configuration file name.

FoGnProcessClcwReq

cl ass FoGnProcessd cwReq
This class does preliminary CLCW process. It then requests FcCmCcsdsFop to take certain action based on its current state.

3-183 305-CD-045-001

Base Classes

publ i ¢ FoFopRequest

Public Functions

EcTVoi d Archived cw()
This member function archives CLCW to afile on an hourly basis.

EcTl nt DeConCl cw()
This member function decommutate CLCW.

EcTl nt Execut e(FcCnCcsdsFop* fop)
This member function invokes ProcessClcw function of FeCmCcsdsFop.

EcTlnt ValidateCd cw()
Validate
This member function validates CLCW bit pattern according to CCSDS standard.

Private Data

EcTU nt nyCurd cw
This attribute identifies my CLCW.

EcTBool ean nmyLockFl ag
This attribute identifies the lock out flag of a CLCW. When thisflag ison, all subsequent type A BC frames are rejected.

EcTUShort | nt nyNext Expect edSeqNo
This attribute identifies FARM's next expected frame sequence number.

EcTBool ean nyRetranFl ag
This attribute identifies the retransmission flag of a CLCW. When thisflag is on, retransmission is required.

EcTBool ean nyWi t Fl ag

This attribute identifies the wait flag of a CLCW. When the flag is on, thisindicates the spacecraft is unable to pass data
to the higher layer.

FoGnResumeAdServiceReq
cl ass FoGhResuneAdSer vi ceReq

This class defines a binding between "Resume AD Service" request and the ResumeAdService operation of my controller.

Base Classes
public FoGhRnsReq

Public Functions
EcTl nt Execut e(FcCntCcsdsFop* fop)

This member function invokes the ResumeAdService operation of FcCmCcsdsFop class.
EcTl nt Set SuspendState(EcTU nt nyState)
This member function sets attribute mySuspendState to passed value.
Private Data

EcTU nt nySuspendState
This attribute identifies Fop suspend state.

3-184 305-CD-045-001

FoGnRmsReq
cl ass FoGhRnsReq

This class provides a common interface for all subsequently derived RM S request classes.

Base Classes

publ i ¢ FoFopRequest

Public Functions
virtual EcTInt Execute(FcCnCcsdsFop* fop)
This member function provides a common interface for all RM S requests and will be overridden by sub class method.
EcTint SetDirective()
This member function sets myDirective to the incoming one.
Private Data

RWCString nyDirective
This attribute identifies the received directive

FoGnSelectCtiu

cl ass FoGnSel ectCtiu
This class defines a binding between RM S "select ctiu” request and SelectCtiu operation of FcCmCcsdsFop class.
Base Classes
publ i ¢ FoGhRmsReq

Public Functions
EcTl nt Execut e(FcCnCcsdsFop* fop)
This member function invokes SelectCtiu operation of FcCmCcsdsFop class.
Private Data

EcTU nt nyCtiu
This attribute identifies my ctiu

FoGnSetRetransmissionLimitReq
cl ass FoGnSet Retransm ssi onLi m t Req

This class defines a binding between " Set Retransmission Limit" request and SetRetransmissionLimit operation of my
controller class.

Base Classes

public FoGhRnmsReq

Public Functions
EcTl nt Execut e(FcCntCcsdsFop* fop)
This member function invokes SetRetransmissionLimit operation of my controller class through passed pointer.

EcTlnt SetRetransmi ssionLimt(EcTU nt nyLinit)
This member function sets data member value.

3-185 305-CD-045-001

Private Data

EcTU nt nyLint
This attribute identifies transmission limit of Fop.

FoGnSetTimelnitialValReq

cl ass FoGnSet Ti nel ni ti al Val Req
This class defines a binding between " Set Timer Initial Value' request and SetTimerInitialVal operation of my controller class.

Base Classes
publ i c FoGhRnmsReq

Public Functions
EcTl nt Execut e(FcCmCcsdsFop* fop)
This member function invokes SetTimerlnitialVal operation of my controller class through passed pointer.

EcTint SetTinelitial Val (EcTULongl nt nyT1Val)
SetTimelnitiaVal
This member function sets myT1Val attribute to passed value.

Private Data

EcTULongl nt nyT1Val
This attribute identifies my initial timeout value.

FoGnSetTimeoutTypeReq

cl ass FoGnSet Ti meout TypeReq
This class defines a binding between " Set Timeout Type" request and SetTimeoutType method of FcCmCcsdsFop class.
Base Classes

public FoGhRnmsReq

Public Functions
EcTl nt Execut e(FcCntCcsdsFop* fop)
This member function invokes SetTimeoutType operation of my controller class through passed pointer.
EcTl nt Set Ti meout Type(ECTBool ean nyTi neout Type)
This member function sets myTimeoutType attribute.
Private Data

EcTBool ean nyTi neout Type
This attribute identifies what action fop will take when timeout happens.

FoGnSetVsReq

cl ass FoGnSet VsReq

This class defines a binding between " Set Transmitter Frame Sequence Number" request and SetV s operation of my controller.

3-186 305-CD-045-001

Base Classes
public FoGhRnmsReq

Public Functions

EcTl nt Execut e(FcCntCcsdsFop* fop)
This member function invokes SetV's function of controller class.

EcTlnt SetVs(EcTUI nt nyVs)
This member function sets attribute myNewV's to passed value.
Private Data

EcTUShort | nt nyNew/s
This attribute identifies my new transmitter frame sequence number.

FoGnSetWinWidthReq

cl ass FoGnSet W nW dt hReq
This class defines a binding between " Set Fop Sliding Window Width" request and SetWinWidth operation of my controller.

Base Classes
public FoGhRnmsReq

Public Functions

EcTl nt Execut e(FcCntCcsdsFop* fop)
This member function invokes SetWinWidth operation of the controller class through passed pointer.

EcTlnt Set WnW dt h(EcTU nt nyW nW dt h)
This member function sets myWinWidth attribute to the passed value.
Private Data
EcTU nt nyW nW dt h

This attribute identifies Fop Sliding Window Width.
FoGnShutdownFopReq

cl ass FoGhShut downFopReq
This class defines a binding between RM S request "shot down" and FcCmCcsdsFop:: ShutdownFop member function.

Base Classes
public FoGhRnmsReq

Public Functions
EcTl nt Execut e(FcCntCcsdsFop* fop)

This member function invokes FcCmCcsdsFop:: ShutdownFop function of the controller.
FoGnStartAdWithClcwCheckReq

cl ass FoGnSt art AWt hd cwCheckReq

This class defines a binding between RM S directive "Start AD Service with a CLCW check™" and StartAdWithClcwCheck
method of FcCmCcsdsFop class.

3-187 305-CD-045-001

Base Classes
public FoGhRnmsReq
Public Functions
EcTl nt Execut e(FcCntCcsdsFop* fop)
This member function invokes StartAdWithClcwCheck method of the controller class.
FoGnStartAdWithoutClcwReq
cl ass FoGnSt art AW t hout O cwReq

This class defines a binding between RM S directive "Init Ad service without clcw check” request and
StartAdWithoutClcwCheck operation of FcCmCcsdsFop class.

Base Classes
public FoGhRnmsReq
Public Functions
EcTl nt Execut e(FcCnCcsdsFop* fop)
This member function invokes StartAdwWithoutClcwCheck operation of FcCmCcsdsFop class.
FoGnTerminateAdReq

cl ass FoGnhTer m nat eAdReq

This class defines a binding between RMS "Terminate AD Service" request and TerminateAdService operation of
FcemCcesdsFop.

Base Classes
public FoGhRnmsReq
Public Functions

EcTl nt Execut e(FcCnCcsdsFop* fop)
This member function invokes TerminateAdService operation of FcCmCcsdsFop class.

3-188 305-CD-045-001

3.4 TransmitCommand Description

The TransmitCommand process receives Command Link Transfer Units (CLTUs) from the
FopCommand process and sends them to EDOS at a data rate corresponding to the current uplink
bandwidth (10, 2, 1 or .125 kbps). TransmitCommand uses the uplink path as defined by the
channel (SSA, SMA, S-Band) and spacecraft antenna (HighGain, Omni) to determine the data
rate.

3.4.1 TransmitCommand Context Description

The context diagram in Figure 3.4.1-1 depicts the data flows between the Transmit Command
process, theinternal EOC and external ground system components. Descriptions of dataflows are
summarized for each component:

FOS Resource Management Subsystem (RMS): RMS starts the TransmitCommand
process running as part of alogical string and then supplies EOC spacecraft contact and
commanding session configuration information. This information includes address of
RMS Subsystems, and TransmitCommand database 1D, spacecraft ID, state (i.e., primary
or backup), operational mode (real-time or simulation), addresses of the Parameter Server
and the FopCommand process. Additionally, it is responsible for managing archive
mode (on, off) and uplink path configuration directives (which specify the channel
and spacecraft antenna being used) from User Interface in a manner that insures the
backup TransmitCommand task will be properly configured (i.e., "hot") to take over
processing in the event of a failure scenario involving the primary TransmitCommand
process.

FOS Data Management Subsystem (DMYS): This subsystem receives, stores and
forwards to appropriate subsystems the TransmitCommand event messages, and uplinked
commands (CLTUs). Configuration files, both standard-startup and snapshot, are written
to and read from the DMS. The configuration file includes the uplink path information
(Channel and current spacecraft Antenna specification), and command archive
information (Archive State).

Parameter Server: The parameter server is responsible for distributing new parameter
values (i.e., ground telemetry) to those processes which have requested (i.e.,registered) to
be informed of updates as values change. Specifically, this is the mechanism which
enables the User Interface subsystem to maintain its workstation displays of Uplink Rate
and Mode, Antenna Specification, Archive Filename, Archive State, and Channel
Specification. TransmitCommand provides these values to the parameter server as they
change. The parameter server, in turn, forwards the new values to those processes which
have requested to be kept updated with parameter values.

EDOS : The TransmitCommand process meters out commands to EDOS for uplink to
the spacecraft.

FopCommand: The FopCommand process forwards CLTUs to the TransmitCommand
process for metering to EDOS.

3-189 305-CD-045-001

06T-€

T00-G0-AD-S0E

Parameter
Server

FopCommand

EDOS
Ground
Telemetry
CLTUs This System
Config
Info
CLTUs

TransmitCommand

status Reconfig

Config info Config
info requests Snapshot
requests Request

FOS Resource
Management Subsystem

Figure 3.4.1-1. TransmitCommand Context Diagram

FOS Data Management
Subsystem

3.4.2

TransmitCommand Interfaces

Table 3.4.2. TransmitCommand Interfaces (1 of 2)

Interface Interface Interface Class Service Service | Frequency
Service Class Description Provider User
Send FoGnCmd Send binary com- CMD: CMD: once per
CLTUsto | Ground mands to EDOS Transmit Transmit | command
EDOS StationlF
Receives FcCm Receives CMD: CMD: once per
CLTUs CCSDSFop | CLTUs from the Transmit Fop command
IF FopCommand task
FcGnTcCltu | Message class for a
CLTU
1/0 FoDsFile Provides file access | DMS: CMD: once per
FoDsFile Transmit | command
Manager
Provide FoGnCmd Receive directives | CMD: RMS: <2 X (twice
Configur- Transmit (other than Transmit String per string
ation RmsIF CommandS) Manager configurati
Info on + once
per pass)
FoGnRms Contains config
Config info for the
Msg TransmitCommand
FoGnRms Allows for setting of
Archive the archive state
Msg (enable/disable)
FoGnRms Configure to
Specify accommodate the
Channel channel in the
Msg uplink path
FoGnRms Configure to
Specify accommodate the
Antenna antenna used in the
Msg uplink path

3-191

305-CD-045-001

Table 3.4.2.

TransmitCommand Interfaces (2 of 2)

Interface Interface Interface Class Service Service | Frequency
Service Class Description Provider User

FoGnRms Configure for both

Channel channel & antenna

Antenna used in uplink path

Msg

FoGnRms Configure task as

Primary either the primary or

ModeMsg backup task

FoGnRms Process will

Shutdown terminate itself, in

Msg an orderly manner

FoGnRms Configure from a

ReadSnap | snapshot

ShotMsg (nominally in

backup mode)

FoGnRms Take a snapshot

SaveSnap (nominally in

ShotMsg | Primary mode)

FoGnRms Acknowledges any

Transmit of the above RMS

AckMsg messages
Provides FoGn Distribution of Parameter | CMD: ~10x perr/t
access to Parameter updated values to Server Transmit | command
data Server other processes
values
Event FdEvEvent | Provides routing DMS: CMD: Once per r/
Logging Logger and archiving of FdEvEvent | Transmit | tcmd,

events messages Archiver twice per
load

3-192

305-CD-045-001

3.4.3 TransmitCommand Object Model Description

The design scope for the TransmitCommand process Object Model (Figure 3.4.3-1) isthe sending
of commands to a single EOS spacecraft. Support for multiple spacecrafts / simulators (i.e.,
multiple logical strings) results in multiple instances of this model.

The FcCmTransmitController class controls the timing of the commands being sent. It is
responsible for initialization of the TransmitCommand process. Commands, in CLTU format, are
received from the FopCommand process via the FcCmCCSDSFoplF class. The
FcCmTransmitController's role is to queue al received commands and to meter them out to the
FoGnCmdGroundStationl F class.

The FcCmTransmitQueue class is a container class that contains instances of the FcCmTcCltu
class. The FcCmTcCltu class contains the command in CLTU format and its size.

The RMS Interfaces for TransmitCommand are shown in Figure 3.4.3-2. The class
FoGnRmsTransmitProxy represents the proxy of the TransmitCommand process to the RMS
subsystem. The RMS subsystem uses this proxy to sends config info and directives to the
TransmitCommand process. It also receives ack back from the TransmitCommand via the
operation GetMessage of this proxy. The class FoGnCmdTransmitRmslF is the interface class
between the TransmitCommand process and the RMS subsystem. This class is used by the
TransmitCommand to receive messages from and send ack message to RMS.

The messagesthat are sent from RM Sto TransmitCommand process are represented by the classes.
FoGnRmsConfigMsg, FoGnRmsArchiveMsg, FoGnRmsSpecifyChannelM sg,
FoGnRmsSpecifyAntennaMsg, FoGnRmsChannelAntennaMsg, FoGnRmsPrimaryModeM sg,
FoGnRmsShutdownM sg, FoGnRmsReadSnapshotM sg and FOGnRmsSaveSnapshotM sg.

The ack message from TransmitCommand to RMS is handled by the class
FoGnCmdTransmitAckMsg.

The class FoGnCmdFopTransmitProxy (Figure 3.4.3-3) represents the proxy used by
FopCommand process to send messages to TransmitCommand process. The message here is an
instance of the FcGnTcCltu class. At the other end, TransmitCommand process uses
FcCmCCSD SFopl F to receive messages from FopCommand.

3-193 305-CD-045-001

V61-€

T00-G0-AD-S0E

FoGnCmdTransmitRmsIF

~ myMessage RWCollectable

FoGnCmdTransmitRmsIF()
~FoGnCmdTransmitRmsIF(
PutMessage(RWCollectable* msg): EcTVoid
GetMessage() RWCollectable*

b

FcCmCCSDSFoplF

FoGnCmdGroundStationlF

+

+ FcCmCCSDSFopIF()
~FcCmCCSDSFoplF()
+ GetCltu(): RWCollectable*

+ FoGnCmdGroundStationIF()
+ ~FoGnCmdGroundStationIF()
+ Send(RWCString* Cltu): EcTVoid

Provid

FoPsClientlF

myAddress RWCString
myParameterTableRWHashDictionary

-

RegisterClient(Cid,Address, Mode, PidList). EcTInt
UpdateParameters(PidBuffer): EcTVoid
UnregisterClient(Cid): EcTVoid
Updatelnterests(Cid,PidList): EcTint

s Cltus.

uplink CLTUs

FdEvEventLogger
- FoDsFile
‘GenEvent(RWCString* msg) e RWCST
myType
Write()
Read()
Close()
Open()
{shared - FDM with all S/S}
—
archive
Log Events
_
ides config inf
]
FcCmTransmitController

~ /myMode: enumerated {Normal, Contigency, Emergency,LowRate}

- ImyRate: ETInt

- myAntenna enumerated {HighGain, Omni}

- myArchiveFile RWCString*

- myArchiveState enumerated {enable, disable}

myChannel: enumerated {SSA,SMA, SBand}
myDmsIF: FoGnCmdDmsIF*

myFoplF: FcCmCCSDSIF*
myNumTransmitCItuEcTInt

myFreeNumBits EcTULonglnt
myParamServer FoGnParamServer*

myArchiveHour EcTInt

myPrimaryMode enumerated {Active, Backup, Inactive}
mySpacecraftid RWCString*

myLastTransmitTime: time

myMaxBitsAllowedEcTULongint

myRmsIF: FoGnCmdRmsIF*

myRunFlag EcTBoolean

myState: enumerated {Wait_for_Cltu, Wait_for_Citu_and_Timer}
myTimer: timer

me,

myo| {RealTii
myTransmitQueueRWSlistCollectableQueue

[-

~FcCmTransmitController()
FcCmTransmitController()

Init() : EcTBoolean

ProcessFopMsg(RWCollectable* FopMsg): EcTVoid
ProcessRmsMsg(RWCollectable* RmsMsg): EcTVoid
ReadSnapshot(RWCString* filename): EcTBoolean
Run(): EcTVoid

Shutdown(x EcTVoid

SaveSnapshot(RWCString* filename): EcTBoolean
OpenArchiveFileEcTBoolean

Transmit(): EcTVoid

stores and retrieves.
CLTUs

1]

FcCmTransmitQueue
& ~FcCmTransmitQueue()
+ FcCmTransmitQueue()
+ append(CIBWC
+ isEmpty(): RWBoolean
+ get(): RWCollectable*

contains

FcGnTcCltu

‘myCltuSize EcTUINt

myCltu: RWCString*

myLoadld: RWCString*

myCltuType enum {RealTime, StartOfLoad,MiddleOfLoad,EndOfLoad}

[-

FeGnTcClu()
~FeGnTcCltu()

q Cltu):
GetCItu(RWCString* Cltu): EcTVoid
SetClItu(RWCString* Cltu); EcTVoid
SetCltuSize(EcTUInt size): EcTVoid
GetCltuSize() EcTUINt
GetLoadId(RWCString* Loadld): ECTVoid
SetLoadId(RWCString* Loadld): EcTVoid
SetCltuType(enum CltuType): ECTVoid
GetCltuType() enum

Figure 3.4.3-1. TransmitCommand Object Diagram

S6T-€

T00-G0-AD-S0E

T T

FoGnRmsTransmitProxy]
- myMessage: RWCollectable FoGnCmdTransmitRms|F
[+ GetMessage(): RWCollectable* - myMessage: RWCollegable
L+ Confi Dbld,Primar ,OpMqde,| ,CmdFop): EcTBoolean
b {enable, TBoolean [+ FoGnCmdTransmitRmgIF()
[+ SpecifyChannel(enum NewChannel {SSA, SMA, S-Band}): EcTBoolean [+ ~FoGnCmdTransmitRnjsIF()
I+ SpecifyAntenna(enum NewAntenna {HighGaifi, Omni}): EcTBoolean [+ PutMessage(RWCollectable* msg). EcTVoid
[+ SpecifyChannelAndAntenna(enum NewChanfiel, enum NewAntenna). EcTBoolean [+ GetMessage(): RWCollectable*
l+ ConfigurationSnapshotRequest(RWCString* fllename): EcTBoolean 7] e
I+ ReadConfigurationSnapshot(RWCString* filerfame): EcTBoolean aypes———
[+ Shutdown(): EcTBoolean
l+ FoGnRmsTransmitProxy()
[+ ~FoGnRmsTransmitProxy()
- i y [Active, Backup,Inactive}). EcTBoolean
| B]
] [
e ———— FoGnRmsArchiveMsg FoGnRmsSnapshotMsg FoGnCmdTransmitAckM
P ——=— - myArchiveState: enum|{enable, disaple} T myFilename: RWCSHing* T myChanselm (SSA, 9MA, SBand) -myAntenna: enum {HighGain, Omni} - myAckStatus: ECTBO
myDbld: RWCString* [+ FoGnRmsArchiveMsg(- [+ FoGnRmsspecifyAntenhaMsg() n 4
myPrimaryMode: enum {Active, Backup} L ~FoGnRmsArchiveMsd() [FoGnRmsSnapshotMsg() [+ FoGnRmsSpecifyChajnelMsg() |+ ~FoGnRmsSpecifyAntehnaMsg() . fﬁ?gﬁ;",f,;ﬁ:ﬁ?‘mf,
; ') l+ ~FoGnRmsSnapshotMdg() [+ ~FoGnRmsSpecifyChgnnelMsg()
myOperationMode : enum {RealTime, Simulation} [+ SetArchiveState(enum NewsState). E¢TVoid > I I EcTvoid |, TBoole
myParamServer: FoGnParamServer* l+ GetArchiveState(): enu| [SetFilename(RWCString* filename): EcTVold [+ SetChannel(enum NewChannel): Ecfivoid |, oianenna); enum + GetStatus(): EcTBool
myCmdFopAddr: FoGnCmdFop* - GetFilename(RWCStrinfy* filename): EcTVold [+ GetChannel(): enum :
FoGnRmsConfigMsg()
~FoGnRmsConfigMsg()
GetC: Dbid, , OpMode, , FopAddry EcTVoid
etC Dbld,Primar ,OpMogie, | FopAddry EcTBoolean
]
B
FoGnRmsChannelAntennaMsg B
- myPrimaryMode: enun{ {active, backup,Inactive}
- myChannel: enum {SSA,SMA,SBand}
- myAntenna : enum {HighGain, Omni} [+ FoGnRmsPrimaryModdMsg() [FoomrmeshaarhMsg0
[+ ~FoGnRmsPrimaryModeMsg() |- ~FoGnRmsShutdopnvisg)
[+ FoGnRmsChannelAntennaMsg() [+ SetPrimaryMode(enum|NewMode). EcTVoid
[+ ~FoGnRmsChannelAntennaMsg() [+ GetPrimaryMode(): enum
- SetChannelAntenna(enum NewChanngf, enum EcTVoid
- GetChannelAntenna(enum NewChanndl, enum NewArSenna)c EcTVoid

&

olean

PROXY, INTERFACE AND MESSAGES FOR THE COMMUNICATION

BETWEEN RMS AND CMD:TRANSMIT TASK

Figure 3.4.3-2. RMS / TransmitCommand I/F Object Diagram

wsgO)
\ckMsg()

In Status). EcTVoid
pan

96T-€

T00-G0-AD-S0E

FoGnCmdFopTransmitProxy

FoGnCmdFopTransmitProxy()
~FoGnCmdFopTransmitProxy()
SendCltu(FcGnTcCltu* Cltu): EcTBoolean

=

FcCmCCSDSFoplF

+ FcCmCCSDSFoplF()
+ ~FcCmCCSDSFoplF()
+ GetCltu() : RWCollectable*

PROXY, INTERFACE AND MESSAGE FOR THE
COMMUNICATION BETWEEN CMD:FOP AND
CMD:TRANSMIT TASKS.

B8 e

RWoCollectable

FcGnTcCltu

myCltuSize : EcTUInt

myCltu : RWCString*

myLoadld : RWCString*

myCltuType: enum {RealTime, StartOfLoad

+ o+ o+ A+ A+ o+ o+ o+

FcGnTcCltu()

~FcGnTcCltu()

isEqual(RWCollectable* Cltu): RWBoolean
GetCltu(RWCString* Cltu): EcTVoid
SetCltu(RWCString* Cltu) : EcTVoid
SetCltuSize(EcTUInt size): EcTVoid
GetCltuSize(): EcTUInt
GetLoadld(RWCString* Loadld): EcTVoid
SetLoadld(RWCString* Loadld) : EcTVoid
SetCltuType(enum CltuType) : EcTVoid
GetCltuType() : enum

,MiddleOfLoad,EndOfLoad}

Figure 3.4.3-3. FopCommand / TransmitCommand I/F Object Diagram

3.4.4 TransmitCommand Dynamic Model Description

The following are the TransmitCommand scenarios which are defined in this section.
Real-Time Command Transmission
Real-Time Load Transmission

Additionally, a state diagram for the TransmitCommand controller classisincluded.

3.4.4.1 Real-Time Command Transmission Scenario

34411 Real-Time Command Transmission Abstract

The purpose of the "Real-Time Command Transmission” scenario is to describe the process by
which commands are metered to maximize bandwidth utilization.

Figure 3.4.4.1-1 is the event trace diagram which correspond to this scenario.

34412 Real-Time Command Transmission Summary Information
Interfaces:

Data Management Subsystem

EDOS

FopCommand process
Stimulus:

The FopCommand process sends a CLTU to TransmitCommand.
Desired Response:

TransmitCommand forwards the CLTUs to EDOS, in a metered manner at a data rate of
125, 1, 2 or 10 kbps, depending on the uplink path.

Pre-Conditions;

The command queue (i.e., FcCmCommandQueue) is empty, and there are no CLTUs in
transmission.

Post-Conditions:
The CLTUs have been successfully forwarded to EDOS.

3.4.4.1.3 Scenario Description

TransmitCommand receives a CLTU from FopCommand via FcCmCCSDSFoplF, and inserts it
into the FcCmTransmitQueue. TransmitCommand checks the number of bits currently in
transmission (by calculating the length of time since the last transmission, and the number of bits
trasmitted at that time) to see if sending out the CLTU would result in the uplink rate being
exceeded. Inasmuch asthere are no commandsin transmission, it isdetermined that the CLTU can
be sent at this time without exceeding the uplink rate. The CLTU is removed from
FcCmTransmitQueue and forwarded to EDOS via FoGnCmdGroundStationlF. The CLTU is
archived via FoDsFile and an event message is logged via FdEvEventLogger. The queue is now
empty, and the processis placed in await state until a message arrives.

TransmitCommand receives a second CLTU from FopCommand and inserts it into the

3-197 305-CD-045-001

FcCmTransmitQueue. TransmitCommand checksthe number of bits currently in transmission and
determines that sending an additional CLTU would cause the uplink rate to be exceeded, and so it
doesnot send the CLTU. A timer isset to expire at the time when the next CLTU can be sent out.
FcCmTransmitController waits for either 1) the next message or 2) the timer to expire.

TransmitCommand receives a third CLTU from FopCommand and inserts it into the
FcCmTransmitQueue. TransmitCommand returns to the wait state, waiting for either 1) the next
message, or 2) the timer to expire. In this state, al of the incoming CLTUs are inserted into the
gueue. Thetimer expires. The next CLTU isremoved from FcCmTransmitQueue and forwarded
to EDOS via FoGnCmdGroundStationlF. The CLTU is archived via FoDsFile and an event
message is logged via FdEvEventL ogger.

The queue is not empty at this point. TransmitCommand checks the number of bits currently in
transmission and determines that it cannot send another CLTU to EDOS at this time without
exceeding the uplink rate. Thetimer is set again, and the process goes into the wait state waiting
for either 1) the next CLTU from the FopCommand process or 2) the timer to expire. This process
is repeated until the queue is once again empty.

3-198 305-CD-045-001

661-€

T00-G0-AD-S0E

FcCmCCSDSFoplF

Provides CLTU

Provides CLTU

provides CLTU

FeCmTransmitController
Insert into queue

|determined CLTU can be sent out

get CLTU

e Provides CLTU

FeCmTransmitQueue

—_—

R —

Transmit CLT!

FoGnCmdGroundStationlF

archive into file

FoDsFile

FdEvEventLogger

—
queue determined empty
=

Wait
I |

Insert into queue

determine next CLTU
cannot be sent out

settimer

wait (continue)
e |

insert into queue

wait (continue)

Timer expires

get CLTU

= Provides CLTU

—_—

——

—_—

Transmit CLT!

log event

archive into file

———
queue determined not empty
[S—
—
determine next CLTU

cannot be sent out

set Timer

Wait

Figure 3.4.4.1-1. Real Time Command Transmission

log event

3.4.4.2 Real-Time Load Transmission Scenario

34421 Real-Time Load Transmission Abstract
The purpose of the "Real-Time Load Transmission" scenario is to describe the process by which
CLTUs representing aload are metered to maximize bandwidth utilization.

Figure 3.4.4.2-1 is the event trace diagram which correspond to this scenario.

3.44.2.2 Real-Time Load Transmission Summary Information
Interfaces:
Data Management Subsystem
EDOS
FopCommand process
Stimulus:
The FopCommand process sends the first CLTU from aload to TransmitCommand.
Desired Response:
TransmitCommand forwards the CLTUs to EDOS, in a metered manner at a data rate of
125, 1, 2 or 10 kbps, depending on the uplink path.
Pre-Conditions:

The command queue (i.e., FcCmCommandQueue) is empty, and there are no CLTUs in
transmission.

Post-Conditions:
The CLTUs have been successfully forwarded to EDOS.

3.4.4.2.3 Scenario Description

TransmitCommand receives the first CLTU in a load sequence from FopCommand via
FcCmCCSDSFoplF, and inserts it into the FcCmTransmitQueue. TransmitCommand checks the
number of bits currently in transmission (by calculating the length of time since the last
transmission, and the number of bitstransmitted at that time) to seeif sending out the CLTU would
result in the uplink rate being exceeded. Inasmuch asthere are no commandsin transmission, it is
determined that the CLTU can be sent at this time without exceeding the uplink rate. The CLTU
is removed from FcCmTransmitQueue and forwarded to EDOS via FoGnCmdGroundStationl F.
The CLTU is archived via FoDsFile and an event message marking the start of the uplink of the
load islogged via FAEVEventLogger. The queueis now empty, and the processis placed in await
state until a message arrives.

TransmitCommand receives a second CLTU from FopCommand and inserts it into the
FcCmTransmitQueue. TransmitCommand checksthe number of bits currently in transmission and
determines that sending an additional CLTU would cause the uplink rate to be exceeded, and so it
does not send the CLTU. A timer is set to expire at the time when the next CLTU can be sent out.
FcCmTransmitController waits for either 1) the next message or 2) the timer to expire.

3-200 305-CD-045-001

TransmitCommand receives a third CLTU from FopCommand and inserts it into the
FcCmTransmitQueue. TransmitCommand returns to the wait state, waiting for either 1) the next
message, or 2) the timer to expire. In this state, al of the incoming CLTUs are inserted into the
gueue. Thetimer expires. The next CLTU isremoved from FcCmTransmitQueue and forwarded
to EDOS via FoGnCmdGroundStationlF. The CLTU is archived via FoDsFile. The Controller
recognizes that the CLTU is part of the load, and as such, does not log an event message for this
CLTU.

The queue is not empty at this point. TransmitCommand checks the number of bits currently in
transmission and determines that it cannot send another CLTU to EDOS at this time without
exceeding the uplink rate. Thetimer is set again, and the process goes into the wait state waiting
for either 1) the next CLTU from the FopCommand process or 2) the timer to expire. This process
isrepeated for all CLTUS, except for thelast CLTU in the load.

Eventually, the timer expires, and the next CLTU is removed from FcCmTransmitQueue and
forwarded to EDOS via FoGnCmdGroundStationlF. The CLTU is archived via FoDsFile. The
Controller recognizesthat the CLTU isthelast CLTU for the load, and an event message marking
the end of the uplink of the load islogged via FdEVEventL ogger.

3-201 305-CD-045-001

c0c-€

T00-G0-AD-S0E

[repeat process]

FeCmCCSDSFoplF

Provides CLTU

provides CLTU

provides CLTU

provides CLTU

Figure 3.4.4.2-1. Real Time Load Command Transmission

FeCmTransmitController

—=

I
determined CLTU

getcLTy

|

inserts into queue.

provides CLTU

FeCmTransmitQueue.

—

—_——

wransmits|

FoGnCmdGroundStationlF

recognizes start of load

archives into file

FoDsFile

queue determined empty

—
wait

—_—

insert into queue
‘Getermined next CLTU

innot be sent out

set timer

wait

’[

insert into queue

wait

Al

—=

insert into queue

wait

timer expired]

getcLTu

e provide CLTU

—_—=

transmit

log evehit

FAEVEventLogger

—
ecogizes CLTU is within load
—

queue determined not empty

determined next CLTU
‘cannot be sent out

set timer

F————

l=———— povdesay

—_—=

transmit

archive into file

recognizes end of load
f—=—

archive into file

log evenit

3.4.4.3 FcCmTransmitController State Diagram Description

Once initialized, the FcCmTransmitController object enters Wait_for_Cltu state. In this state, it
can receive and process configuration and shutdown messages from RMS, and CLTUs from
CMD:Fop process. It only leaves this state for another state if it receives either a shutdown
message from RM S or CLTUs from CMD:Fop.

Upon receiving CLTUsfrom CMD:Fop inthe Wait_for_Cltu state, the controller object inserts all
incoming CLTUs into FcCmTransmitQueue object. It then checks to see if it can forward any
CLTU to EDOS without exceeding the uplink rate. If it can, then the controller will leave this state
for the Transmit state. If it cannot, it will calculate the time that the next CLTU in the queue may
be sent. The controller then sets the timer accordingly and goes to the Wait_for_Cltu_and_Timer
state.

In the Transmit state, the controller sendsas many CLTUsto EDOS as possible, without exceeding
bandwidth. Then, if the queue is empty, it returns to the Wait_for_Cltu state. Otherwise, it
calculates the time that it needs to wait before sending the next CLTU. It then sets the timer and
goesto the Wait_for_Cltu_and Timer state.

In the Wait_for_Cltu_and_Timer state, the controller object receives CLTUs and messages from
other subsystemsjust like when it isin the Wait_for_Cltu state. The only differenceisthat, when
receiving CLTUsfrom CMD:Fop, it enqueues the CLTUs and waits for the timer to expire before
it can enter the Tranmit state.

In either the Wait_for_Cltu or Wait_for_Cltu_and_Timer state, upon receiving the shutdown
message from RM S, the controller object will enter the shutdown state, then exit.

3-203 305-CD-045-001

Received start up
message from RMS

Received
Shutdown
message

Queue is empty

Timer Expired

wait for

STATE DIAGRAM FOR
COMMAND TRANSMISSION
PROCESS

CLTU

Received CLTUs and
can send CLTUs out/
insert into queue

Y

Transmit

Queue is not empty/
Set Timer

Received CLTUs and cannot
send CLTUs out/
insert into queue and
set timer

Wait for
CLTU and

Timer

1
Received CLTUs/Insert into queue
]

Received shutdown message

V

Shutdown

i
®

3-204

Figure 3.4.4.3-1. FcCmTransmitController state diagram

305-CD-045-001

3.4.5 TransmitCommand Data Dictionary

FcCmCCSDSFoplF
cl ass FcCCCSDSFopl F

This class handles the exchange of information between the Transmit task and the Fop Command task.

Public Construction
Fc CnCCSDSFopl F()
This member function is the default constructor

~Fc CnCCSDSFopl F()
This member function is the destructor

Public Functions

RWCol | ect abl e* Get d tu(void)
This member function returns the pointer to the Cltu forwarded from Fop.

FcCmTransmitController

cl ass FcCnilransm t Control | er
Thisclassisthe controller classfor the Command Transmit process. It isresponsible for receiving CL TUsfrom Command Fop
process and uplink these CLTUs out at a specified transmission rate.

Public Construction
FcCnilr ansmi t Control |l er ()
This member function is the default constructor for the Transmit Controller.

~FcCmlransm t Control l er()
This member function is the destructor for the Transmit Controller.

Public Functions

EcTBool ean I nit(void)
This member function initializes the Transmit Controller.

EcTBool ean QpenAr chi veFi |l e(voi d)

This member function opens the file for archiving CLTUSs. It uses the spacecraft ID, the operational mode (real time or
simulation) and time stamp (year,month,day,hour) for the archive file name.

EcTVoi d ProcessFopMsg(FopMsQ)
This member function accepts CLTUs from the command Fop task.
* |f the current state is Wait_for_Cltu, it then determines if it

cansend out aCLTU. If it can, it callsthe Transmit function. Otherwise, it sets the timer to go off when a CLTU can be
sent out.

* |f the current state is Wait_for_Cltu_and_Tiner, it enqueues
all received CLTUs into the transmt queue.

EcTVoi d ProcessRrsMsg(RnsMVsQ)
This member function processes directives from RM S process.

EcTBool ean ReadSnapshot (RACString* fil enane)
This member function reads out the antenna, channel and archive state from the config file.

3-205 305-CD-045-001

EcTVoi d Run(voi d)

This member function waits for and receives messages from Fop or Rms.
EcTBool ean SaveSnapshot (RACStri ng* nane)

This member function writes out the antenna, channel and archive state to the snapshot file.
EcTVoi d Shut down(voi d)

This member function does the cleanup job before the termination of the transmit process.
EcTVoi d Transm t (void)

This member function sends out one CLTU at atime whileit can. When it cannot send out any more CLTU and there are
still more CLTUsto be sent out, it will set the timer to go off at the time when it can send out the next CLTU .

Private Data
enuner ated _nyMde
myMode

This member variable is derived from myAntenna and myChannel. It contains the mode of the current transmission (e.g.
normal, contingency, emergency).

EcTInt _nyRate

myRate

This member variable is derived from myAntenna and myChannel. It contains the current transmission rate.
enuner at ed nyAnt enna

This member variable contains the current antenna used in spacecraft receiving commands.
RWCSt ri ng* myArchi veFile

This member variable points to the file used for archiving uplinked CLTUs.
EcTl nt nyArchi veHour

This member variable contains the hour when the archive file was opened.
enuner at ed nyArchiveState

This member variable contains the state of archiving, i.e. On or Off.
enuner at ed myChannel

This member variable contains the uplink channel, e.g. SSA (S band single access), SMA (S band multiple access).
FoGhCndDnsl F* myDirsl F

This member variable points to the interface to DMS..
FcCCCSDSI F* nyFopl F

This member variable points to the interface to Cmd:Fop task.
EcTULongl nt nyFreeNunBits

This member variable contains the number of bits that can be transmitted at the current time.
FoGhCndG oundSt ati onl F* nyG oundStationl F

This member variable points to the interface to EDOS .
tinme nyLastTransm tTi me

This member variable contains the time of the last transmission.
EcTULongl nt nmyMaxBi t sAl | owed

This member variable contains the size of the largest CLTU.

EcTlnt nmyNunmifransmitCtu
This member variable contains the number of Cltuin aload

3-206 305-CD-045-001

enuner at ed myQper at i onvbde

This member variable contains the current operational mode, e.g. real-time or simulation:
FoGnhPar anSer ver * nyPar anSer ver

This member variable points to the parameter server
enurer at ed nyPri mar yMode

This member variable contains the state of the process, e.g. primary ,backup or inactive.
FoGhCndRnsl F* nmyRmsl F

This member variable points to the interface to RMS.
EcTBool ean myRunFl ag

This member variable contains the indicator telling the transmit controller object whether or not to stop the task.
RWCSt ri ng* mySpacecraftld

This member variable contains the ID of the spacecraft.

enunerated nyState

This member variable contains the current state of the transmit controller object (e.g. Wait_for_Cltu,
Wait_for_Cltu_and_Timer).

timer nyTimer
This member variable contains the id of the timer.

RWSl i st Col | ect abl eQueue* nyTransm t Queue
This member variable points to the transmit queue.

FcCmTransmitQueue

cl ass FcCmilransm t Queue

This classis derived from Rogue Wave RWSlistCollectableQueue class. It isacontainer classthat contains CLTUs to be
uplinked.

Base Classes
public RWHl i st Col | ect abl eQueue

Public Construction
FcCmlransm t Queue()
This member function is the default constructor.

~FcCnilr ansmi t Queue()
This member function is the default destructor.

Public Functions

EcTBool ean append(RACol | ect abl e* cltu)
This member function append one CLTU into the queue.
RWCol | ect abl e* get (voi d)
This member function get the next CLTU from the queue.

RVWBool ean i senpty(voi d)
This member function checks to seeif the queue is empty.

3-207 305-CD-045-001

FcGnTcCltu

class FcGhTcC tu
This class contains the message passed from Fop to Transmit task.

Public Construction

FcGnTcd tu(voi d)
This member function is the default constructor

~FcGnTcd tu(voi d)
This member function is the destructor.

Public Functions

Get A tuType(voi d)
This member function returns myCltuType

EcTVoid Getdtu(RWCString* dtu)
This member function returns myCltu

EcTU nt Getd tuSi ze(voi d)
This member function returns myCltuSize

EcTVoi d Get Loadl d(RACSt ri ng* Loadl d)
This member function returns the Loadld

EcTVoid Setd tu(RWCString* dtu)
This member function sets myCltu attribute.

EcTVoi d Setd tuSi ze(EcTUI nt si ze)
This member function set myCltuSize

EcTVoid SetC tuType(d tuType)
This member function sets myCltuType

EcTVoi d Set Loadl d(RACSt ri ng* Loadl d)
This member function sets the loadld

RWBool ean i sequal (RWCol | ectabl e* Ctu)
This member function is required by Rogue Wave but is not used here.

Private Data
RWCSt ri ng* myCltu
This member variable containsthe CLTU

EcTU nt nyd tuSi ze
This member variable contains the size of the CLTU

enum nyCl t uType

Private Types

enum
This member variable contains the type of the CLTU (rea-time, StartOfLoad, MiddleOfLoad or EndOfL oad)

3-208 305-CD-045-001

Enumerators

EndOf Load

M ddl ef Load
Real Ti me
Start Of Load

FoGnCmdFopTransmitProxy
cl ass FoGhCndFopTr ansmi t Proxy

This class implements the Transmit Proxy for the Fop task.

Public Construction

FoGhCndFopTr ansmi t Proxy()
This member function is the default constructor

~FoGhnCndFopTr ansmi t Proxy()
This member function is the destructor
Public Functions

EcTBool ean Sendd tu(FcGnTcd tu* dtu)
Transmit This member function send the Cltu to Transmit task

FoGnCmdGroundStationlF
cl ass FoGhCndG oundSt ati onl F

Public Construction

FoGnCmdG oundSt at i onl F()
This member function is the default constructor

~FoGhCndGr oundSt at i onl F()
This member function is the destructor.

Public Functions

EcTVoi d Send(RACString* Ctu)
This member function takesa CLTU and sendsiit out.

FoGnCmdTransmitAckMsg
cl ass FOGhCndTransm t AckMsg

This class implements the ack message sent from Cmd: Transmit task to Rms subsystem.

Public Construction

FoGhCndTr ansmi t AckMsg(voi d)
Thisisthe default constructor.

~FoGnCmdTr ansmi t AckMsg(voi d)
Thisisthe destructor.
Public Functions

EcTBool ean Get St at us(voi d)
This member function returns myAckStatus

3-209

305-CD-045-001

EcTVoi d Set St at us(ECTBool ean St at us)
This member function sets myAckStatus to status.

Private Data

EcTBool ean myAckSt at us
This member variable contains the status.

FoGnCmdTransmitRmsIF
cl ass FoGhCndTransm t Rnsl F

This class implements the interface from Cmd: Transmit task to Rms subsystem

Public Construction

FoGhCndTr ansmi t Rnsl F(voi d)
Thisisthe default constructor.

~FoGnCndTr ansmi t Rrsl F(voi d)
Thisisthe destructor.
Public Functions
RWCol | ect abl e* Get Message()

This member function returns the address to the object message forwarded to thisinterface.

EcTVoi d Put Message(RWCol | ect abl e* nsQ)
This member function sends a RWCollectable object out.

Private Data

RWCol | ect abl e nyMessage
The message that this interface holds

FoGnRmsArchiveMsg
cl ass FoOGWRsAr chi veMsg

This class contains the Archive message.

Public Construction

FoGhRnsAr chi veMsg(voi d)
This member function is the default constructor

~FoGnRns Ar chi veMsg(voi d)
This member function is the destructor.
Public Functions

Get Archi veSt at e(voi d)
This member function returns the value of the attribute

EcTVoi d Set Archi veSt at e(NewSt at e)
This member function set the attribute to NewState

3-210

305-CD-045-001

Private Data

enum nmyAr chi veSt at e

Private Types
enum
This member variable contains the archive state
Enumerators
di sabl e

enabl e

FoGnRmsChannelAntennaMsg
cl ass FoGhRmsChannel Ant ennaMsg

This class contains the message to update Channel and Antenna

Public Construction

FoGhRns Channel Ant ennaMsg(voi d)
This member function is the default constructor

~FoGnRnsChannel Ant ennaMsg(voi d)
This member function is the destructor
Public Functions

EcTVoi d Get Channel Ant enna(NewChannel , NewAnt enna)
This member function returns the values of attributes.

EcTVoi d Set Channel Ant enna(NewChannel , NewAnt enna)
This member function set the attributes to new values
Private Data
enum nmyAnt enna
enum nyChannel

Private Types
enum
This member variable contains the name of the antenna

Enumerators

Hi ghGai n
Oomi

enum
This member variable contains the name of the channel

3-211 305-CD-045-001

Enumerators

SBand
SNVA
SSA

FoGnRmsConfigMsg
cl ass FoGhRmsConfi gMsg

This class contains the config message that Rms send to Cmd: Transmit.

Public Construction
FoGhRnsConf i gMsg(voi d)
This member function is the default constructor.
~FoGnRnsConf i gMsg(voi d)
This member function is the destructor.
Public Functions

EcTVoi d Get Confi g(RACStri ng* Spacecraftld, RWString* Dbld, enun(Active))
This member function returns all the config attributes.

Private Data

FoGhCndFop* nyCndFopAddr
myFopAddr
This member variable contains the address of the Fop Task.

RWCSt ri ng* myDbl d
This member variable contains the database 1D
enum nmyOper at i onMode

FoGnhPar anSer ver * nyPar anSer ver
This member variable contains the address of the parameter server.

enum nyPri mar yMbde
RWCSt ri ng* mySpacecraftld
This member variable contains the I|d of the spacecraft.
Private Types
enum
This member variable contains the operational mode of the process.
Enumerators

Real Ti me
Si mul ati on

enum
This member variable contains the mode of the process.

3-212 305-CD-045-001

Enumerators
Active
Backup

FoGnRmsPrimaryModeMsg
cl ass FoOGhRnsPri mar yModeMsg

This class contains the new Primary Mode.

Public Construction

FoGhRnsPri mar yModeMsg(voi d)
This member function is the default constructor.

~FoGnRnsPri mar yModeMsg(voi d)
This member function is the destructor.
Public Functions

Get Pri mar yMode(voi d)
This member function returns the value of the attribute

EcTVoi d Set Pri mar yMbde(Newivbde)
This member function sets the value of the attribute
Private Data

enum nyPri mar yMbde

Private Types
enum

This member variable contains the mode of operation

Enumerators

active
backup

FoGnRmsReadSnapshotMsg
cl ass FoGhRrsReadSnapshot Msg

This classis derived from FoGnhRmsSnapshotMsg; it contains the name of the snapshot file.

Base Classes
publ i ¢ FoGhRmsSnapshot Msg

Public Construction

FoGhRnsReadSnapshot Msg(voi d)
FoGnRmsReadSnapshopMsg
This member function is the default constructor
~FoGhRnsReadSnapshot Msg(voi d)
This member function is the destructor.

3-213

305-CD-045-001

FoGnRmsSaveSnapshotMsg

cl ass FoGhRrsSaveSnapshot Msg
This classis derived from FoGnRmsSnapshotM sg; it contains the filename to save the snapshot.

Base Classes
publ i ¢ FoGhRmsSnapshot Msg

Public Construction

FoGnRns SaveSnapshot Msg(voi d)
This member function is the default constructor

~FoGnRns SaveSnapshot Msg(voi d)
This member function is the destructor

FoGnRmsShutdownMsg

cl ass FoGhRmsShut downMsg
This class contains the shutdown message viaits type (iSA relation)

Public Construction

FoGnRns Shut downMsg(voi d)
This member function is the default constructor

~FoGnRns Shut downMsg(voi d)
This member function is the destructor

FoGnRmsSnapshotMsg

cl ass FoGhRnsSnapshot Msg
Thisisthe base class for FoGnRmsReadSnapshotMsg and FoOGnRmsSaveSnapshoM sg classes.

Public Construction

FoGhRns Snapshot Msg(voi d)
FoGnRmsSnapshopMsg
This member function is the default constructor

~FoGnRns Snapshot Msg(voi d)
This member function is the destructor.
Public Functions

EcTVoi d GetFil enane(RACSt ring* fil enane)
This member function returns the value of the attribute.

EcTVoi d SetFil enane(RACString* fil enane)
This member function sets the value of the attribute
Private Data
RWCSt ri ng* nyFil enane
This member variable contains the name of the snapshot file

3-214 305-CD-045-001

FoGnRmsSpecifyAntennaMsg
cl ass FoGhRmsSpeci f yAnt ennaMsg

This class contains the Specify Antenna message.

Public Construction

FoGnRns Speci f yAnt ennaMsg(voi d)
FoGnRM sSpecifyAntennaM sg
This member function is the default constructor.

~FoGnRns Speci f yAnt ennaMsg(voi d)
~FoGnRM sSpecifyAntennaM sg
This member function is the destructor.
Public Functions

Get Ant enna(voi d)
This member function returns the value of the attribute.

EcTVoi d Set Ant enna(NewAnt enna)
This member function sets the value of the attribute.
Private Data

enum nyAnt enna

Private Types
enum
This member variable contains the name of the antenna

Enumerators

H ghGai n
Oomi

FoGnRmsSpecifyChannelMsg

cl ass FoGhRnsSpeci f yChannel Msg
This class contains the Specify Channel message.

Public Construction

FoGhRnsSpeci f yChannel Msg(voi d)
This member function is the default constructor.

~FoGhRns Speci f yChannel Msg(voi d)
This member function is the destructor.
Public Functions

Get Channel (voi d)
This member function returns the value of the attribute.

EcTVoi d Set Channel (NewChannel)
This member function sets the value of the attribute.

3-215

305-CD-045-001

Private Data

enum nyChannel

Private Types

enum
This member variable contains the channel name.

Enumerators

SBand
SVA
SSA

FoGnRmsTransmitProxy

cl ass FoGhRrsTransni t Pr oxy
Thisclassisthe class for Transmit Proxy for RM S task

Public Construction
FoGhRnsTr ansmi t Proxy(voi d)
This member function is the default constructor
~FoGhRnsTransmi t Proxy(voi d)
This member function is the destructor

Public Functions

EcTBool ean Archi ve(ArchiveSt at e)

This member function creates an FOGnRmsArchiveM sg object and sets its attribute to that of the argument, then sendsiit
to Cmd: Transmit task

EcTBool ean Confi g(Spacecraftld, Dbld, PrinmaryMde, OpMde, ParanServer,
CrdFop)

This member function creates an FoGhRmsConfigM sg object and setsiits attributes to those of the arguments, then sends
it to Cmd: Transmit

EcTBool ean Confi gurati onSnapshot Request (RACString* fil enane)

This member function creates an FoGnRmsSaveSnapshotM sg object and sets its attribute to that of the argument, then
sendsit to Cmd: Transmit task

RWCol | ect abl e* Get Message()
Returns the pointer to the message
EcTBool ean ReadConfi gurati onSnapshot (RACStri ng* fil enane)

This member function creates an FoGnRmsReadSnapshotM sg object and sets its attribute to that of the argument, then
sendsit to Cmd: Transmit task

EcTBool ean Sel ect Pri mar yMode(NewPr i mar yMbde)

This member function creates an FoGnRmsPrimaryModeM sg object and sets its attribute to that of the argument, then
sends it to Cmd: Transmit task

EcTBool ean Shut down(voi d)
This member function creates an FoGnRmsShutdownM sg object and sends it to the Cmd: Transmit task.

EcTBool ean Speci f yAnt enna(NewAnt enna)

This member function creates an FoGnRmsSpecifyAntennaM sg object and sets its attribute to that of the argument, then
sends it to Cmd: Transmit task

3-216 305-CD-045-001

EcTBool ean Speci f yChannel (NewChannel)

This member function creates an FOGnRmsSpecifyChannel M sg object and setsiits attribute to that of the argument, then
sends it to Cmd: Transmit task

EcTBool ean Speci f yChannel AndAnt enna(NewChannel , NewAnt enna)

This member function creates an FoGnRmsChannel AntennaM sg object and sets its attributes to those of the arguments,
then sendsit to Cmd: Transmit task

Public Types
enum Archi veState

Enumerators

di sabl e
enabl e

enum NewAnt enna

Enumerators

Hi ghGai n
Oomi

enum NewChannel

Enumerators

S
SVA
SSA

enum NewPr i mar yMode

Enumerators

Active
Backup

Private Data

RWCol | ect abl e myMessage
This member variable contains the received message .

3-217 305-CD-045-001

Abbreviations and Acronyms

ACL Access Control List

AD Acceptance Check/TC Data

AGS ASTER Ground System

AM Morning (ante meridian) -- see EOS AM

Ao Availability

APID Application Identifier

ARAM Automated Reliability/Availability/Maintainability

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
(formerly ITIR)

ATC Absolute Time Command

BAP Baseline Activity Profile

BC Bypass check/Control Commands

BD Bypass check/TC Data (Expedited Service)

BDU Bus Data Unit

bps bits per second

CAC Command Activity Controller

CCB Change Control Board

CCSDS Consultative Committee for Space Data Systems

CCTI Control Center Technology Interchange

CD-ROM Compact Disk-Read Only Memory

CDR Critical Design Review

CDRL Contract Data Requirements List

CERES Clouds and Earth's Radiant Energy System

Cl Configuration item

CIL Critical Items List

CLCW Command Link Control Words

CLTU Command Link Transmission Unit

CMD Command subsystem

CMS Command Management Subsystem

CODA Customer Operations Data Accounting

COP Command Operations Procedure

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

AB-218 305-CD-045-001

CRC
CSCl
CSMS
CSS
CSTOL
CTIU
DAAC
DAR
DAS
DAT
DB
DBA
DBMS
DCE
DCP
DEC
DES
DFCD
DID
DMS
DOD
DoD
DS
DSN
DSS
e-mail
Ecom
ECS
EDOS
EDU
EGS
EOC

EOD
EON
EOS

Cyclic Redundancy Code

Computer software configuration item
Communications and Systems Management Segment
Communications Subsystem (CSMS)

Customer System Test and Operations Language
Command and Telemetry Interface Unit (AM-1)

Distributed Active Archive Center
Data Acquisition Request
Detailed Activity Schedule
Digital Audio Tape

Data Base

Database Administrator

Database Management System

Distributed Computing Environment

Default Configuration Procedure
Digital Equipment Corporation
Data Encryption Standard

Data Format Control Document
Data Item Description

Data Management Subsystem
Digital Optical Data

Department of Defense

Data Server

Deep Space Network

Decision Support System
electronic mail

EOS Communication

EOSDIS Core System

EOS Data and Operations System
EDOS Data Unit

EOS Ground System

Earth Observation Center (Japan);
EOS Operations Center (ECS)

Entering Orbital Day
Entering Orbital Night
Earth Observing System

AB-219

305-CD-045-001

EOSDIS
EPS
ESH
ESN
ETS
EU
EUVE
FAS
FAST
FDDI
FDF
FDIR
FDM
FMEA
FOP
FORMATS
FOS
FOT
FOV
FPS
FRM
FSE
FTL
FUI
GB
GCM
GCMR
GIMTACS
GMT
GN
GOES
GSFC
GUlI
H&S
H/K
HST

EOS Data and Information System
Encapsul ated Postscript

EDOS Service Header

EOSDI'S Science Network

EOS Test System

Engineering Unit

Extreme Ultra Violet Explorer

FOS Analysis Subsystem

Fast Auroral Snapshot Explorer
Fiber Distributed Data Interface
Flight Dynamics Facility

Fault Detection and I solation Recovery
FOS Data Management Subsystem
Failure Modes and Effects Analyses
Frame Operations Procedure

FDF Orbital and Mission Aids Transformation System

Flight Operations Segment

Flight Operations Team

Field-Of-View

Fast Packet Switch

FOS Resource Management Subsystem

FOT S/C Evolutions

FOS Telemetry Subsystem

FOS User Interface

Gigabytes

Global Circulation Model

Global Circulation Model Request

GOES I-M Telemetry and Command System
Greenwich Mean Time

Ground Network

Geostationary Operational Environmental Satellite
Goddard Space Flight Center

Graphical User Interface

Health and Safety

Housekeeking

Hubble Space Telescope

AB-220

305-CD-045-001

I/F
1/0
ICC
ICD
ID
IDB
IDR
|EEE
|OT
P
IP-ICC
IPs
IRD
ISDN
ISOLAN
ISR
IST
IST
IWG
JPL
Kbps
LAN
LaRC
LASP
LEO
LOS
LSM
LTIP
LTSP
MAC

MB
MBONE
Mbps
MDT
MIB

Interface

I nput/Output

Instrument Control Center
Interface Control Document
| dentifier

Instrument Database
Incremental Design Review

Institute of Electrical and Electronics Engineers

Instrument Operations Team
International Partners

International Partners-1nstrument Control Center

International Partners

Interface requirements document
Integrated Systems Digital Network
Isolated Local Area Network

Input Schedule Request

Instrument Support Terminal
Instrument Support Toolkit
Investigator Working Group

Jet Propulsion Laboratory

Kilobits per second

Local Area Network

Langley Research Center
Laboratory for Atmospheric Studies Project
Low Earth Orbit

Lossof Signd

Loca System Manager

Long-Term Instrument Plan
Long-Term Science Plan

Medium Access Control;
Message Authentication Code

Megabytes

Multicast Backbone

M egabits per second

Mean Down Time
Management Information Base

AB-221

305-CD-045-001

MISR
MMM
MO&DSD
MODIS
MOPITT
MSS
MTPE
NASA
Nascom
NASDA
NCAR
NCC
NEC
NFS
NOAA
NSI
NTT
OASIS
ODB
ODM
OMT
(0[]
OO0D
OpLAN
osl
PACS
PAS
PDB
PDF
PDL
PDR

Pl

PI/TL
PID
PIN
POLAR

Multi-angle Imaging Spectro-Radiometer
Minimum, Maximum, and Mean

Mission Operations and Data Systems Directorate (GSFC Code 500)

M oderate resolution Imaging Spectrometer
Measurements Of Pollution In The Troposphere
Management Subsystem

Mission to Planet Earth

National Aeronautics and Space Administration
NASA Communications Network

National Space Development Agency (Japan)
National Center for Atmospheric Research
Network Control Center

North Equator Crossing

Network File System

National Oceanic and Atmospheric Administration
NASA Science Internet

Nippon Telephone and Telegraph

Operations and Science Instrument Support
Operational Database

Operational Data Message

Object Model Technique

Object Oriented

Object Oriented Design

Operational LAN

Open System Interconnect

Polar Acquisition and Command System
Planning and Scheduling

Project Data Base

Publisher's Display Format

Program Design Language

Preliminary Design Review

Principal Investigator

Principal Investigator/Team Leader
Parameter |ID

Password Identification Number

Polar Plasma L aboratory

AB-222

305-CD-045-001

POSIX
PSAT
PSTOL
QIL
RIT
RAID
RCM
RDBMS
RMA
RMON
RMS
RPC
RTCS
RTS

SSIM

STOL

Polar-Orbiting Platform

Portable Operating System for Computing Environments
Predicted Site Acquisition Table

PORTS System Test and Operation Language
Quick Look

Real-Time

Redundant Array of Inexpensive Disks
Real-Time Contact Management

Relational Database Management System
Reliability, Maintainability, Availability

Remote Monitoring

Resource Management Subsystem

Remote Processing Computer

Relative Time Command Sequence

Relative Time Sequence;
Real-Time Server

Spacecraft

Schedule Add Requests

Spacecraft Controls Computer

Science Computing Facility

Spacecraft Command Language

Software Development Facility

Science Data Processing Segment

Software Development and Validation Facility
Systems, Engineering, and Analysis Support
South Equator Crossing

Support LAN

S-band Multiple Access

Service Management Center

Space Network

System Network Mgt Protocol

Structured Query Language

S-band Single Access

Spacecraft Simulator

Solid State Recorder

System Test and Operations Language

AB-223

305-CD-045-001

T&C
TAE
TBD
TBR
TCP
TD
TDM
TDRS
TDRSS
TIROS
TL
TLM
TMON
TOO
TOPEX
TPOCC
TRMM
TRUST
TSS
TSTOL
T™W
u.s.
UAV
ul

UPS
us
UTC

VAX
VMS
WIS
WAN
WOTS
XTE

Telemetry and Command

Transportable Applications Environment

To Be Determined

To Be Replaced/Resol ved/Reviewed
Transmission Control Protocol

Target Day

Time Division Multiplex

Tracking and Data Relay Satellite

Tracking and Data Relay Satellite System
Television Infrared Operational Satellite
Team Leader

Telemetry subsystem

Telemetry Monitor

Target Of Opportunity

Topography Ocean Experiment
Transportable Payload Operations Control Center
Tropical Rainfall Measuring Mission
TDRSS Resource User Support Terminal
TDRSS Service Session

TRMM System Test and Operations Language
Target Week

United States

User AntennaView

User Interface

User Planning System

User Station

Universal Time Code;
Universal Time Coordinated

Virtual Extended Address
Virtual Memory System
Workstation

Wide Area Network

Wallops Orbital Tracking Station
X-Ray Timing Explorer

AB-224

305-CD-045-001

This page intentionally left blank.

AB-225 305-CD-045-001

Glossary

GLOSSARY of TERMS for the Flight Operations Segment

activity

analysis

attitude data

availability

A specified amount of scheduled work that has a defined
start date, takes a specific amount of time to complete, and
comprises definable tasks.

Technical or mathematical evaluation based on calculation,
interpolation, or other analyticad methods. Anaysis
involves the processing of accumulated data obtained from
other verification methods.

Data that represent spacecraft orientation and onboard
pointing information. Attitude dataincludes:

0 Attitude sensor data used to determine the pointing of the
Spacecraft axes, calibration and alignment data, Euler
angles or quaternions, rates and biases, and associated
parameters.

0 Attitude generated onboard in quaternion or Euler angle
form.

o0 Refined and routine production data related to the
accuracy or knowledge of the attitude.

A measure of the degree to which an item isin an operable
and committable state at the start of a "mission” (a
requirement to perform its function) when the "mission” is
called for an unknown (random) time. (Mathematically,
operational availability isdefined asthe mean time between
failures divided by the sum of the mean time between
failures and the mean down time [before restoration of
function].

GL-226 305-CD-045-001

availability
(inherent) (Aj)

availability
(operational) (Ao)

build

calibration

The probability that, when under stated conditions in an
ideal support environment without consideration for
preventive action, asystem will operate satisfactorily at any
time. The “ideal support environment” referred to, exists
when the stipul ated tools, parts, skilled work force manuals,
support equipment and other support items required are
available. Inherent availability excludes whatever ready
time, preventive maintenance downtime, supply downtime
and administrative downtime may require. Aj can be

expressed by the following formula:

A = MTBF/ (MTBF+MTTR)

Where: MTBF = Mean Time Between Failures
MTTR = Mean Time To Repair

The probability that a system or equipment, when used
under stated conditions in an actua operationa
environment, will operate satisfactorily when called upon.
Ao can be expressed by the following formula:

Ap = MTBM /(MTBM + MDT + ST)
Wheree MTBM = Mean Time Between Maintenance
(either corrective or preventive)

MDT = Mean Maintenance Down Time where
corrective, preventive administrative and
logistics actions are al considered.

ST = Standby Time (or switch over time)

A schedule of activities for atarget week corresponding to
normal instrument operations constructed by integrating
long term plans(i.e., LTSP, LTIP, and long term spacecraft
operations plan).

An assemblage of threads to produce a gradual buildup of
system capabilities.

The collection of datarequired to perform calibration of the
instrument science data, instrument engineering data, and
the spacecraft engineering data. It includes pre-flight
calibration measurements, in-flight calibrator
measurements, calibration equation coefficients derived
from calibration software routines, and ground truth data
that areto be used in the data calibration processing routine.

GL-227 305-CD-045-001

command

command and data
handling (C&DH)

command group

detailed activity
schedules

direct broadcast

Instruction for action to be carried out by a space-based
instrument or spacecraft.

The spacecraft command and data handling subsystem
which conveys commands to the spacecraft and research
instruments, collects and formats spacecraft and instrument
data, generates time and frequency references for
subsystems and instruments, and collects and distributes
ancillary data.

A logical set of one or more commandswhich are not stored
onboard the spacecraft and instruments for delayed
execution, but are executed immediately upon reaching
their destination on board. For the U.S. spacecraft, from the
perspective of the EOS Operations Center (EOC), a
preplanned command group is preprocessed by, and stored
at, the EOC in preparation for later uplink. A real-time
command group is unplanned in the sense that it is not
preprocessed and stored by the EOC.

The schedule for aspacecraft and instruments which covers
up to al0 day period and is generated/updated daily based
on theinstrument activity listing for each of the instruments
on the respective spacecraft. For a spacecraft and
instrument schedule the spacecraft subsystem activity
specifications needed for routine spacecraft maintenance
and/or for supporting instruments activities are
incorporated in the detailed activity schedule.

Continuous down-link transmission of selected rea-time
data over a broad area (non-specific users).

GL-228 305-CD-045-001

EOS Data and
Operations System

(EDOS) production
data set

housekeeping data

instrument

instrument activity
deviation list

instrument activity
list

instrument
engineering data
instrument

Mi Croprocessor
memory loads

Data sets generated by EDOS using raw instrument or
spacecraft packets with space-to-ground transmission
artifacts removed, in time order, with duplicate data
removed, and with quality/ accounting (Q/A) metadata
appended. Time span or number of packets encompassed
inasingle data set are specified by the recipient of the data.
These data sets are equivalent to Level 0 data formatted
with Q/A metadata.

For EOS, the data sets are composed of: instrument science
packets, instrument engineering packets, spacecraft
housekeeping packets, or onboard ancillary packets with
quality and accounting information from each individual
packet and the data set itself and with essential formatting
information for unambiguous identification and subsequent
processing.

The subset of engineering data required for mission and
science operations. These include health and safety,
ephemeris, and other required environmental parameters.

0 A hardware system that collects scientific or operational
data.

0 Hardware-integrated collection of one or more sensors
contributing data of one type to an investigation.

0 An integrated collection of hardware containing one or
more sensors and associated controls designed to produce
data on/in an observational environment.

An instrument's activity deviations from an
existinginstrument activity list, used by the EOC for
developing the detailed activity schedule.

An instrument's list of activities that nominally covers
seven days, used by the EOC for developing the detailed
activity schedule.

subset of telemetered engineering data required for
performing instrument operations and science processing

Storage of data into the contents of the memory of an
instrument’s microprocessor, if applicable. These loads

could include mi croprocessor-stored tables,
microprocessor-stored commands, or updates to

microprocessor software.

GL-229 305-CD-045-001

instrument resource
deviation list

instrument resource
profile

instrument science
data

long-term
instrument plan
(LTIP)

long-term science
plan (LTSP)

long term spacecraft
operations plan

mean time between
failure (MTBF)

mean down time
(MDT)

mean time between
mai ntenance
(MTBM)

mean time to repair
(MTTR)

An instrument's anticipated resource deviations from
anexisting resource profile, used by the EOC for
establishing TDRSS contact times and building the
preliminary resource schedule.

Anticipated resource needs for an instrument over a
targetweek, used by the EOC for establishing TDRSS
contact times and building the preliminary resource
schedule.

Data produced by the science sensor(s) of an instrument,
usually constituting the mission of that instrument.

The plan generated by the instrument representative to the
spacecraft's IWG with instrument-specific information to
complement the LTSP. It is generated or updated
approximately every six months and covers a period of up
to approximately 5 years.

The plan generated by the spacecraft's IWG containing
guidelines, policy, and priorities for its spacecraft and
instruments. The LTSP is generated or updated
approximately every six months and covers a period of up
to approximately five years.

Outlines anticipated spacecraft subsystem operations and
maintenance, along with forecasted orbit maneuvers from
the Flight Dynamics Facility, spanning a period of several
months.

The reliability result of the reciprocal of afailure rate that
predictsthe average number of hoursthat anitem, assembly
or piece part will operate within specific design parameters.
(MTBF=1/(]) failure rate; (l) failure rate = # of failures/
operating time.

Sum of the mean time to repair MTTR plus the average
logistic delay times.

The mean time between preventive maintenance (MTBPM)
and mean time between corrective maintenance (MTBCM)
of the ECS equipment. Each will contribute to the
caculation of the MTBM and follow the relationship:
UYMTBM =1/MTBPM + YMTBCM

The mean time required to perform corrective maintenance
to restore a system/equipment to operate within design
parameters.

GL-230 305-CD-045-001

object

orbit data

playback data

preliminary resource
schedule

preplanned stored
command

principal
investigator (PI)

prototype

Identifiable encapsulated entities providing one or more
services that clients can request. Objects are created and
destroyed as a result of object requests. Objects are
identified by client via unique reference.

Data that represent spacecraft locations. Orbit (or
ephemeris) data include: Geodetic latitude, longitude and
height above an adopted reference ellipsoid (or distance
from the center of mass of the Earth); a corresponding
statement about the accuracy of the position and the
corresponding time of the position (including the time
system); some accuracy requirements may be hundreds of
meters while other may be afew centimeters.

Data that have been stored on-board the spacecraft for
delayed transmission to the ground.

An initial integrated spacecraft schedule, derived from
instrument and subsystem resource needs, that includes the
network control center TDRSS contact timesand nominally
Spans seven days.

A command issued to an instrument or subsystem to be
executed at some later time. These commands will be
collected and forwarded during an available uplink prior to
execution.

An individual who is contracted to conduct a specific
scientific investigation. (An instrument Pl is the person
designated by the EOS Program as ultimately responsible
for the delivery and performance of standard products
derived from an EOS instrument investigation.)

Prototypes are focused devel opments of some aspect of the
system which may advance evolutionary change.
Prototypes may be developed without anticipation of the
resulting software being directly included in a formal
release. Prototypes are developed on a faster time scale
than the incremental and formal development track.

GL-231 305-CD-045-001

raw data

real-time data

reconfiguration

SCC-stored
commands and
tables

scenario

Data in their original packets, as received from the
spacecraft and instruments, unprocessed by EDOS.

0 Level 0 — Raw instrument data at original resolution,
time ordered, with duplicate packets removed.

0 Level 1A - Level O data, which may have been
reformatted or transformed reversibly, located to a
coordinate system, and packaged with needed ancillary and
engineering data.

0 Level 1B —Radiometrically corrected and calibrated data
in physical units at full instrument resolution as acquired.
0 Leve 2 —Retrieved environmental variables (e.g., ocean
wave height, soil moisture, ice concentration) at the same
location and similar resolution as the Level 1 source data.
0 Level 3—Dataor retrieved environmental variables that
have have been spatially and/or temporally resampled (i.e.,
derived from Level 1 or Level 2 data products). Such
resampling may include averaging and compositing.

0 Level 4 — Model output and/or variables derived from
lower level data which are not directly measured by the
instruments. For example, new variables based upon atime
seriesof Level 2 or Level 3 data.

Data that are acquired and transmitted immediately to the
ground (as opposed to playback data). Delay is limited to
the actual time required to transmit the data.

A change in operational hardware, software, data bases or
procedures brought about by a change in a system’s
objectives.

Commands and tables which are stored in the memory of
the central onboard computer on the spacecraft. The
execution of these commands or the result of loading these
operational tables occurs sometime following their storage.
The term “core-stored” applies only to the location where
theitems are stored on the spacecraft and instruments; core-
stored commands or tables could be associated with the
spacecraft or any of the instruments.

A description of the operation of the system in user's
terminology including a description of the output response
for agiven set of input stimuli. Scenarios are used to define
operations concepts.

GL-232 305-CD-045-001

segment

Ssensor

spacecraft
engineering data
spacecraft
subsystems activity
list

spacecraft

subsystemsresource
profile

target of opportunity
(TOO)

thread

thread, asused in
some Systems
Engineering
documents

toolkits

One of the three functional subdivisions of the ECS:
CSMS -- Communications and Systems Management
Segment

FOS -- Flight Operations Segment

SDPS -- Science Data Processing Segment

A device which transmits an output signal in response to a
physical input stimulus (such as radiance, sound, etc.).
Science and engineering sensors are distinguished
according to the stimuli to which they respond.

0 Sensor name: The name of the satellite sensor which
was used to obtain that data.

The subset of engineering data from spacecraft sensor
measurements and on-board computations.

A spacecraft subsystem's list of activities that nominally
covers seven days, used by the EOC for developing the
detailed activity schedule.

Anticipated resource needs for a spacecraft subsystem over
atarget week, used by the EOC for establishing TDRSS
contact times and building the preliminary resource
schedule.

A TOO is a science event or phenomenon that cannot be
fully predicted in advance, thus requiring timely system
response or high-priority processing.

A set of components (software, hardware, and data) and

operational procedures that implement a function or set of
functions,

A set of components (software, hardware, and data) and
operational procedures that implement a scenario, portion
of a scenario, or multiple scenarios.

Some user toolkits devel oped by the ECS contractor will be
packaged and delivered on a schedule independent of ECS
releases to facilitate science data processing software
development and other development activities occurring in
parallel with the ECS.

GL-233 305-CD-045-001

	1.��Introduction
	1.1 Identification
	1.2 Scope
	1.3 Purpose
	1.4 Status and Schedule
	1.5 Document Organization

	2.� Related Documentation
	2.1 Parent Document
	2.2 Applicable Documents
	2.3 Information Documents
	2.3.1 Information Document Referenced

	3. Command Subsystem
	3.1 Command Context Description
	3.2 FormatCommand Description
	3.2.1 FormatCommand Context Description
	3.2.2 FormatCommand Interfaces
	3.2.3 FormatCommand Object Model Description
	3.2.4 FormatCommand Subsystem Dynamic Model
	3.2.5 FormatCommand Data Dictionary

	3.3 FopCommand Description
	3.3.1 FopCommand Context Description
	3.3.2 FopCommand Interfaces
	3.3.3 FopCommand Object Model Description
	3.3.4 FopCommand Dynamic Model Description
	3.3.5 FopCommand Data Dictionary

	3.4 TransmitCommand Description
	3.4.1 TransmitCommand Context Description
	3.4.2 TransmitCommand Interfaces
	3.4.3 TransmitCommand Object Model Description
	3.4.4 TransmitCommand Dynamic Model Description
	3.4.5 TransmitCommand Data Dictionary

	List of Figures
	Figure 3.1-1. Command Subsystem Context Diagram
	Figure 3.2.1-1 FormatCommand Context Diagram
	Figure 3.2.3-1. FormatCommand Object Diagram
	Figure 3.2.3-2. FormatCommand Message Obect Diagram
	Figure 3.2.4.1-1. FormatCommand Initialization: Successful for Primary Process
	Figure 3.2.4.2-1. FormatCommand Initialization: Successful for Back Up Process

	Figure 3.2.4.3-1. FormatCommand Change Authorized User: Successful
	Figure 3.2.4.4-1. Real-Time Command Validation: Successful Event Trace
	Figure 3.2.4.5-1. Real Time Command Validation: No command definition
	Figure 3.2.4.6-1. Real Time Command Validation: Fail Submnemonic check
	Figure 3.2.4.7-1. Real Time Command Validation: No Prerequisite override
	Figure 3.2.4.8-1. Real Time Command Validation: Cancal critical
	Figure 3.2.4.9-1. Stored Command Validation: Verification required
	Figure 3.2.4.10-1. Stored Command Validation: No Verification required
	Figure 3.2.4.11-1. Write Configuration Snapshot request
	Figure 3.2.4.12-1. Read Configuration Snapshot request
	Figure 3.2.4.13-1. Load Command Validation: Successful Event Trace
	Figure 3.2.4.14-1. Load Command Validation: Unsuccessful due to missing load
	Figure 3.2.4.15-1. Load Command Validation: Unsuccessful due to Invalid Parameters
	Figure 3.2.4.16-1. Load Command Validation: Unsuccessful due to canceling out-of-ordered partition
	Figure 3.2.4.17-1. Load Command Validation: Unsuccessful due to no prerequisite override
	Figure 3.2.4.18-1. Load Command Validation: Unsuccessful due to canceling critical
	Figure 3.2.4.19-1. Load Command: Abort Load
	Figure 3.2.4.20-1. Real-Time Command Verification: Successful Event Trace
	Figure 3.2.4.21-1. Real-Time Command Verification: Fail due to time out
	Figure 3.2.4.22-1. Real-Time Load Verification: Successful Event Trace
	Figure 3.2.4.23-1. Real-Time Load Verification: Failure due to time out
	Figure 3.2.4.24-1. Real Time Dump
	Figure 3.2.4.25-1. Hex Command Validation: Success Event Trace
	Figure 3.2.4.26-1. Hex Command Validation: Failure Event Trace
	Figure 3.2.4.27-1. FcCdCmdController state diagram
	Figure 3.2.4.28-1. FcCdRtCmd state diagram
	Figure 3.2.4.29-1. FcCdLoadCmd state diagram
	Figure 3.3.1-1. FopCommand Context Diagram
	Figure 3.3.3-1. FopCommand Object Diagram
	Figure 3.3.3-2. FopCommand Request Message Object Diagram
	Figure 3.3.3-3. FopCommand TcFrame Object Diagram
	Figure 3.3.4.1-1. FopCommand Initialization: Successful
	Figure 3.3.4.2-1. FopCommand Initialization: Failure Scenario
	Figure 3.3.4.3-1. FopCommand Init. AD Service w/out CLCW: Successful
	Figure 3.3.4.4-1. FopCommand Init. AD Service w/out CLCW: Failure scenario
	Figure 3.3.4.5-1. FopCommand Init. AD Service with CLCW: Successful
	Figure 3.3.4.6-1. FopCommand Init. AD Service with CLCW: Failure scenario
	Figure 3.3.4.7-1. FopCommand Init. AD Service with set VR: Successful scenario
	Figure 3.3.4.8-1. FopCommand Init. AD Service with set VR: Failure scenario
	Figure 3.3.4.9-1. FopCommand Transmission scenario
	Figure 3.3.4.9-2. FopCommand: Building Transfer Frame
	Figure 3.3.4.10-1. FopCommand Retransmission scenario
	Figure 3.3.4.11-1. FcCmCcsdsFop state diagram
	Figure 3.4.1-1. TransmitCommand Context Diagram
	Figure 3.4.3-1. TransmitCommand Object Diagram
	Figure 3.4.3-2. RMS / TransmitCommand I/F Object Diagram
	Figure 3.4.3-3. FopCommand / TransmitCommand I/F Object Diagram
	Figure 3.4.4.1-1. Real Time Command Transmission
	Figure 3.4.4.2-1. Real Time Load Command Transmiss...
	Figure 3.4.4.3-1. FcCmTransmitController state dia...

